Eco-Hydrological Simulation Environment
(echse)

Documentation of Pre- & Post-Processors






Author David Kneis

Affiliation  Institute of Earth and Environmental Sciences
Hydrology & Climatology Section,
University of Potsdam, Germany

Contact david.kneis [at] uni-potsdam.de

Project PROGRESS
Sub-project D2.2
Funding German Ministry of Education and Research (BMBF)

Lastupdate March 7,2014

Please help to improve this document by sending suggestion®ctions, wishes, and other useful feedback to
the author (see above).






Contents

1 Catchment modeling utilities (R-package opocat ch) 7
1.1 PUIPOSE. . . . o o e e 7
1.2 Installation . . . . . . . 8
1.3 Standarddocumentation . . . . . . . ... 8
1.4 Supporteddatafileformats. . . . . . . . . .. L 8

141 OVEIVIEW. . . . o o e e e e e e e 8
1.4.2 ASCligridformat . . . . . . . . . 8
1.4.3 Shapefileformat . . . . . . . . .. 9
1.5 Typicalusage. . . . . . . . 9
1.5.1 Step 1: Filling of the elevation modelém fill). . .. ... ... .. ... ...... 9
1.5.2 Step 2: Analysis of the filled elevation moda#¢(m anal yze) . . . ... ... ... .. 9
1.5.3 Step 3: Identification of model objectsydr oMbdel Data) . . ... ... ....... 10
1.5.4 Step 4: Calculation of additional sub-basinattesut . . . . .. ... .......... 12
1.5.5 Step 5: Estimation of river cross-section properties. . . . . . .. .. ... L. 13
1.6 Practical hints. . . . . . . . . 16
1.6.1 Processingofrasterdata. . . . . . ... .. ... ... ... . 16
1.6.2 Makinginputgridsconsistent . . . . . . . ... 16
1.6.3 Creatingapropershapefile. . . . . .. .. ... ... . o 17
1.6.4 Handlingveryshortreaches. . . . . . . .. .. . ... . . ... .. 17
1.6.5 Specialfeaturesintherivernet . . . . . . . . . . .. .. ... .. 18
1.6.6 Extraction of river-cross sections from elevatiordels . . . . . .. ... ... ... .. 19
1.7 TODO. . . o 19
1.7.1 HRUSUPPOIt. . . . . o e e e e e 19

2 R-package for model optimization frops) 21
2.1 PUIPOSE. . . . o e 21
2.2 Installation . . . . .. 21
2.3 Standard documentation . . . . . . ... 21
2.4 Theoretical background. . . . . . . .. 22

2.4.1 Goalofoptimization. . . . . . . . . . e 22
2.4.2 Optimizationmethods. . . . . . . . . . . e 22
2.4.3 Model erroras objectivefunction . . . . ... ... o oo 22
2.4.4 Semi-automatic calibration. . . . . . ... o 23
2.5 Important methodsimops . . . . . . . . . L 24
251 update_tenplate . ... .. . . ... 24
252 nmodel Error_multiDim. ... . e 25
25.3 nts_runandnts_eval . .. ... 25
2.6 Example: Monte-Carlo simulation . . . . . . . . . .. ... 25

5



6 Contents

2.6.1 Modelequations. . . . . . . . .. 25
2.6.2 Modelimplementation . . . . . . . ... 25
2.6.3 Observeddata. . . . . . . . . . 27
2.6.4 Monte-Carloexperiment . . . . . . . . . . . . e 28
2.7 Usingnops with anechse-basedmodel. . . . . . . . . .. .. ... .. L 29
2.8 Troubleshooting . . . . . . . . . . 31
2.8.1 Generalrecommendations. . . . . . . . . ... 31
2.8.2 Specificrecommendations. . . . . . ... 32
3 Filling of gaps in meteorological time seriesrtet eof i | 1) 33
3.1 PUIpOSE. . . . e 33
3.2 Methods. . . . . 34
3.21 Fillingofgaps . . . . . . e 34
3.2.2 Inverse-distance approach. . . . . . . . ... 35
3.2.3 Residualinterpolation. . . . . . . . . .. 36
3.3 Argumentsandinvocationakteofi ll . . ... ... ... . L Lo 37
3.4 INPUL. . . L e e 83
3.4.1 Locationstable . . . . . . . .. 38
3.4.2 Timeseriesfile. . . . . . e 39
3.5 OUtput. . . . 39
3.6 Hintsforpracticalusage. . . . . . . . . . . 39
3.6.1 Missing-only data (options beyond persistence). . . . . . .. ... ... oL 39
4 River cross-section analysisq{sAnal yzer) 41
4.1 PUIPOSE. . . . o e e e 41
4.2 Methods. . . . . . . . 41
4.3 Arguments and invocation &S Anal yzer . . . . . ... L L 42
4.4 INPUL. . . L e e e e 34
441 Geometrydata. . . . . ... 43
442 Flowvaluesofinterest . . . . . . . . .. 43
443 UNItS . . .. 43
45 OUtpuL. . . . o e e e 45
5 Time series visualization tool { spl ot ) a7
5.1 PUIpoSe. . . . . e e 47
5.2 Requiredsoftware. . . . . . . . a7
5.3 Instructionsfiles . . . . . . . 47
5.4 Expected formatofdatafiles. . . . ... ... . ... .. ... 48
5.5 Invokingt spl ot . . . . e 49
551 ONLINUX. . . o oo e 49
552 OnWINdOWS. . . . . . . e 49
List of figures 51
List of tables 53
54

Bibliography



Chapter 1

Catchment modeling utilities (R-package
t opocat ch)

1.1 Purpose net including manual adjustments. Supplying an exter-
nal (or manually modified) river net file results in great

The purpose of opocat ch (Kneis 2013 is to ex- flexibility. Some advantages are:

tract and pre-process information required by semi-

distributed rainfall-runoff models from spatial data. e It can be achieved that the computed sub-

This includes, for example catchments closely correspond to their natural

: I counterparts.
¢ the identification of (sub)-catchments. P

e the determination of basic attributes of sub- ® The user has the chance to split long reaches into
catchments and river reaches. several shorter segments and, hereby, gets control
over both the minimurand maximunsize of sub-
e the analysis of input-output relation between the catchments.
modeled objects (catchments, reaches, nodes,
etc.). e Special features (such as reservoirs, canals, or
pipes) may be integrated into the river net file and

¢ the estimation of river-cross section properties for considered in the processing.

sites where no survey data are available.

t opocat ch is distinguished from similar pre-

processors by the following attributes: Created output The produced outputs are mostly in

a format which can readily be used as input to rainfall-

_ _ . ~_runoff models built with theechse simulation envi-
Non-interactive Once a suitable R-script is writtenonment (se&neis 20123.

the pre—processing runs without user interaction. Thus, s 2012, t opocat ch used to be single, self-
whenever the spatial input data changes due to updaesained R-script whose behavior was controlled by
corrections, or qu|f|cat|onsall steps of processing, large number of configuration options. In 2013,
can be repeated without any effort. t opocat ch was converted into a regular R-package to

facilitate software maintenance, distribution, and docu-
Optional river net generation Pre-processors for hy-mentation. Thereford,opocat ch is no longer a sin-
drological models typically generate a river net fromgle, ready-to-use script. Instead, the user has to write
the digital elevation model (DEM). This option is alsdnis/her own R-script that combines the various meth-
available int opocat ch. As an alternative, however,ods supplied by the package in a reasonable way. Some
the user can supply an existing river net file. Such a fifriidelines are provided in subsequent sections. Refer to
may originate, for example, from digitized topographithe package’s documentation for details on the various
maps, field surveys or it could be a DEM-derived rivanethods.

7



8 Chapter 1 Catchment modeling utilities (R-package opocat ch)

1.2 Installation River net

In order to use theopocat ch, theR software for sta-
tistical computing is required. Sdgneis (20121 for
information on how to obtain and install this software.
Thet opocat ch package is distributed as a tarball
archive. See the respective sectioikimeis(2012h for
more information on how to install such add-on pack-
ages on your system. Note thaipocat ch internally
uses Fortran source code. Thus, a Fortran compiler
must be available on the system in order to successfully
build the package. The recommended compiler is GNU Soil types
gf ortran.
Currently, t opocat ch depends on the following
additional R-packagesshapefi |l es, mapt ool s,
andf or ei gn. These packages need to be installed

priortot opocat ch. Land use

-
1.3 Standard documentation
After thet opocat ch package has been loaded with
the R command Figure 1.1: The four spatial input data setstodpocat ch.

li brary("topocatch") I

. . .. One or more soil maps as grid(S)he grid values can
a list of all provided methods can be generated with be integers (e. g. encoding the soil types) or quan-

hel p( package="t opocat ch") I titative properties such as conductivities, for exam-
ple.

The documentation of the individual methods can be ) )
displayed by typing the question mark followed by th® map of land useThe grid values are usually integers

name of the method, for example encoding the land use classes.

?hydr oModel Dat a I An optional vector file representing the river nbtust
be a shape file containing line features (sometimes
Those who consider to use this package for the first called arcs). The attribute table must have (at
time probably want to read the following sections to get  least) one field with feature IDs (of integer type)
a better understanding of the general concepts and the and a class field (of type string). See S&d6.3
purpose of the various methods. on practical issues and restrictions related to the
creation of this file. If this input is not available,

. t opocat ch provides a method to generate an
1.4 Supported data file formats appropriate vector file from the DEM.

1.4.1 Overview Thus, we deal with both raster and vector data.

A typical pre-processing script for hydrological model-

ing usingt opocat ch uses the following spatial data] 4.2 ASCII grid format
sets as input (see Fid.1): ] ) ]
Allinputraster data, e. g. those mentioned in Sed.1,

A digital elevation model (DEM) as a gridhe  grid used byt opocat ch must be ASCII grids. This is a
values can be either integers or floating pointidely used exchange format for spatial raster data. It
numbers. was originally used by ESRI's GIS systems but can be
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ncol s 6 files containg coordinates, indices, and attribute data,
nr ows 5 respectively.

x| | corner 3310800
yl I corner 5601975

cel | si ze 100 1.5 Typical usage
NODATA val ue -9999
001111 The methods provided by thepocat ch package can
111111 be combined in various ways. The subsequent sections
i i ; ; ; 'gggg describe a typical case of usage based on the most im-
122335 portant high-level routines.

1.5.1 Step 1: Filling of the elevation model
Figure 1.2: Example of a file in ASCII grid format. (dem fill )

Most digital elevation models (DEM) contain sinks.
imported and exported by many other GIS, includinphey represent either natural or man-made depressions
free software such as QGIS. in the earth surface or artifacts of remote sensing. The

A file in ASCII grid format is a plain text file filing of such sinks is a necessary step because their
(Fig. 1.2). The first six lines of the file contain headegxistence would hinder the identification of continu-
information and the remaining lines hold the actual grisus drainage paths. In contrast to other software tools,
data as a matrix (one row per line). The meaning of tkige designated method ihopocat ch uses a non-

keywords in the header in as follows: iterative approach to fill the sinks. Its method’s name
) ) isdem fill. See the package’s internal documenta-

ncols Number of columns in the matrix of values startjon for details on the method’s arguments.
ing at line 7 of the file. For large elevation models, the filling of sinks may

onsume a considerable amout of computation time.
herefore, it may be favourable to apphem fil |
once and to save its output for later re-use. This is
xllcorner X-coordinate corresponding to the lower lefighly if the entire pre-processing script is still under
corner of the cell in the lower left corner of thedevelopment.
matrix. Defines the Western border of the grid.

yllcorner Y-coordinate corresponding to the lower Iefil"5'2 Step 2: Analysis of the filled eleva-
corner of the cell in the lower left corner of the tion model (dem anal yze)

matrix. Defines the Southern border of the grid. The methoddem anal yze is used to analyze the
cellsize Length of a grid cell's edge. This is a Sim‘:]|(‘§ink-ﬁlled elevation model. .It computes flow directipn
value, i.e. cells are quadratic. codes, the flow accumulation, the concentration time
index and it finally generates a vector file of the flow
NODATA_valueNumerical value used to identifypaths. See the package’s internal documentation for de-
missing (or invalid) data in the values matrix.  tails on the method’s arguments. Some details on inter-
nal algorithms are given below.

nrows Number of rows in the matrix of values startin
at line 7 of the file.

1.4.3 Shape file format Identification of flow directions

This vector geo-data format can be im- and exported e flow direction is computed for each cell of the
most GIS systems including ESRI's GIS software, afdEM. It is identical to the direction of the steepest
QGIS, for example. It can be imported and exportetbwnward gradient (single-direction approach). The
by R as well. A shape file consists of (at least) thressed algorithm is capable of handling locally flat areas.
separate files with an identical basename and the &ke result is an integer grid with values in the range
tensions. shp, . shx, and. dbf. These are binary 1...8. The meaning of these codes is shown in Ei§.
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a value of 1 is assumed. Then, thg for a particu-
lar cell k£ of the elevation model can be calculated with

i 3
= T nk L.
& > 4 cti(k) =) —mm— (1.4)
= ; Vdzi/L;
5 In this equationnk represents the number of raster

cells through which the runoff generated in delnust

5 5 flow until it is discharged into a rivei; is the (horizon-
tal) length of path segment If the flow direction code
of cell i is 2, 4, 6, or 8 (see Fidl.3), L; is equivalent
to the width of a raster cell. If the flow direction code
Calculation of flow accumulation is an odd numberl; is the width of a cell multiplied

by v/2. Furthermoredz; is the elevation difference be-

For each cell of the DEM, the flow accumulation igyeen celli and the neighboring cell into which cell
computed as the number of upstream cells. This igrains. The user must specify a lower limit fét; to
formation is obtained from the grid of flow directiorhyoid zero division in cases where a flow path crosses a

Figure 1.3: Flow directions encoded as integer values.

codes. flat area.
In the resulting grid, theti value of a cell will be
Calculation of concentration time indexes larger, the longer the flow path and the lower the sur-

face slope along the flow path is. Small values

are found for near-river cells and where steep surface
slopes occur. Later in the processing, characteristic val-
ues (such as a meati) are computed for the individual
catchments. These values may be used as indicators for
the rate of runoff concentration in the individual catch-

A concentration time indexti is computed for each
raster cell. Theti is derived from the definition of the
flow velocity u according to Eqnl.1 and Manning's

equation (Eqnl.2).

L ments, since they integrate information on the catch-
U == (1.1) , - . . .

T ment’s shape, drainage density, and slope. The indica-
tors primarily reflect thelifferencedetween the catch-

” :l ) /_So . R%/3 (1.2) ments in terms of runoff concentration. To estimate ac-
n tual concentration times, thei values need to be mul-

In Eqn. 1.1, L is the length of the flow path arid tipIi_ed py appropriate calibration parameters (recall the
is the corresponding travel time. In Eqh2, n repre- derivation of Eqn1.4from Eqn.1.3).
sents the roughness (known as Manning's)is the
energy slope, an& is the hydraulic radius. For steady>eneration of drainage lines (river net)
flow problems,Sy is (_aquival_entto the surface slope. Fofhe gem anal yze method finally generates a shape
small flow depths (in particular for overland flow  fiie representing the drainage lines, i. e.rivers, based on
is dominated by the flow width and the flow depth hage computed flow direction codes. Since the elevation
little influence. Merging Eqnsl.1 & 1.2into & sin- 446 s the only source of information used, the result
gle expression and solving for the travel timigyields 5y differ from reality. This is especially true where the

Eqn.1.3 drainage network was altered by human action (canals,
reservoirs, river training, etc.).
T= L (1.3) e
1/n-+/Sy - R2/3 1.5.3 Step 3: Identification of model ob-

Thecti is finally derived from Egnl.3by simply ne- jects (hydr oMbdel Dat a)
glecting the linear terms/n and R%/%. This is equiva- After the DEM has been pre-processed and analyzed
lent to treating:/R%/? as a scaling constant for whichby dem fi || and dem anal yze, the major ob-
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jects used in hydrological modeling (sub-basins, river
reaches, etc.) need to be identified. This is achieved s ]
by a call to the high-level methddydr ovbdel Dat a. | ‘} ]
See the package’s internal documentation for details on

the method’s arguments. Some background on the in-

ternal algorithms is provided below. [

) ) ) Figure 1.4: Steps of the vector-to-raster conversion. Left:
Vector-to-raster conversion of drainage lines Line features as vectors data. Middle: Gridded line feature

Right: Gridded lines after buffering using a width of 1 cell.

For the identification of Su_b-basms, th_e draln_age Im%e 'nodata’ value is indicated by white color, the 'confict’
must be converted to a grid. The drainage lines mygf o by gray color:

be provided as a shape file which can be created in the
following ways: Initial state After 1% iteration Final state

e e rdre e

e It can be generated byem anal yze which is £ i LA <
the usual option for catchments without human al fj// /5 I .
teration of the drainage system. < % } 7} < g
I~ ~ LA ~
. «| /] - - PRz -
e |t can an output odem anal yze with subse- =7 7 v v
S AAAAA A W Vel AVl VAR A vk

guent manual modifications. Such modification

are typically required to take special objects likgjgyre 1.5: The approach used to iteratively build the catch-
reservoirs, for example, into account. ments. The dark-colored cells represent the initial cedls ¢

. — . rying the ID of the corresponding reach (a buffer was omitted
e The shape file can be a digitized version of thﬁthis example). The arrows indicate the flow directions. In

basin's true river net. In this way it can be achieveg, .1, jreration, new cells (in lighter colors) are added eih
that the generated sub-basins correspond to the ggrgual catchments. The gray-colored cell in the left grics
tual river net as close as possible. the special "conflict’ code because the junction of the reach

Th It arid is of t int d has th is located in that cell. A catchment is assigned to this cell t
eresuitgndis ottype integer and has th€ Same &y, 1,0 cojjs in this catchment carry a special ‘conflictueal

tent and resolution as the DEM. The value of grid Celj§sieaq of a valid ID. These cells are reallocated (i. e. ddde
tOUCh(?d by a particular line fegture IS set to the COIMyr the surrounding catchments) in a later step of processing
sponding value of the shape file’s ID field. A special

'nodata’ value is assigned to all grid cells not touched
by any line feature. Another special 'conflict’ valuef the catchments where only near-river cells are set (to
is assigned to cells which are touched by several linte ID of the corresponding reach). Starting from these
(with different IDs). After this step, a buffer (having theeach cells (or near-reach cells if a buffer is used), the
width of a certain number of cells) is created around trdividual catchments 'grow’ step-by-step by adding
gridded lines (see Fid..4). cells which discharge into the already set cells (accord-
The result grid is used later to initialize the compuing to the flow direction grid). The procedure continues
tation of catchments. Note that line features to whiaimtil the catchments have reached their final size, i. e.
no catchment should be assigned are excluded from there are no more cells to add. The approach is illus-
vector-to-raster conversion. The IDs of those featurésgted in Fig.1.5.
therefore, do not appear in the result grid. Whether aAs illustrated in Fig.1.5, cells discharging into a
catchment is generated for a particular line feature'@onflict’ cell (i. e. a cell that is in contact with mul-
mainly controlled by the entry in the class field of théple reaches), cannot be assigned to the catchment of
shape file’s attribute table. a particular reach. Those cells are currently filled by a
simple nearest neighbor interpolation.

Building of catchments

. - H logical k I
The catchments are determined based on the grid 3/fdro ogical network assembly

the flow directions and the grid of the rasterized linda this step, the linkage of the different objects (usually
(Fig. 1.4). The latter grid is used as an initial estimateeaches and catchments) is analyzed and information on
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input-output-relations are dumped to tables. These thalso helps to spatially 'truncate’ the model, i. e. to
bles can directly be used as an input for object-basetrict the model domain to the catchment of a specific
hydrological catchment models built with tleehse stream gage.
software.
The analysis o.f the network com.prises a number ¢fg 4 Step 4: Calculation of additional
iggesdtebpeslovc\)/f which only the most important are men- sub-basin attributes
i i ) Many hydrological catchment models require addi-
1. The data in the shape file of the river network afgyna| data in order to derive the sub-basin’s parame-
checked for errors (non-unique IDs, Missing afars Most typically, such information is obtained from
tributes, etc.). digital maps of soil properties and land use.
2. The reach defining the systems outlet is identified. FOr the purpose of data extraction from such
maps thet opocat ch package provides the two
3. For each line feature contained in the shape filmethods geogri d. zones. conti nuous and
the downstream neighbor is determined. In tigeogri d. zones. cl assifi ed. Both methods
usual case, this means that for each reach objeetuire as input

the connected downstream reach is identified. ) ) ) )
1. a primary grid with the computed sub-basins

4. A catchment object is being linked to the line fea-  (defining the zones) and
tures (namely to all reach objects). Whether this o
actually happens for a particular line feature de-2. asecond grid with the data to be analyzed for each
pends on the class of the feature (defined in the at- ZON€-

tribute table’s class field) and further user-supplied
settings. Extraction of continuous data

5. The upstream neighbor(s), if any, are identified fdhe geogri d. zones. conti nuous method as-
each line feature. If the number of upstream neightmes that the second input grid contains data on a spa-
bors is greater than 1, an appropriate node objél@(”y continuous variable like elevation, for example.
is inserted. The function of the node object is tbor each individual zone (l e. sub—basin) it calculates a
collect the information (usually inflow data) fromstatistics of that variable, namely the arithmetic mean,
all upstream neighbors and to provide this infofiuantiles, and extremes with respect to the zone.
mation to the receiving downstream object. The method is typically used to determine for all sub-

basins an average value and/or range of

6. Several output tables are generated.

e elevation,

Finally, basic attributes of the major objects are com- o ) )

puted. For sub-basins, the location of the center of grav-* & quantitative soil property (depth, hydraulic con-
ity and the drained area are calculated. For river reaches ductivity, etc.),

the computed properties include e the concentration time index returned by the

e the coordinates and elevation of end points, dem anal yze method.
e the reach length, Extraction of classified data
e the estimated bed slope, In contrast to that the

geogri d. zones. cl assified method  as-

sumes that the second input grid contains classified
As an optional step, the relation between the identitformation such as land use codes (typically integers).

fied objects and stream gages can be identified. Itis tHesr each individual zone (i. e. sub-basin) it calculates

known for each object whether a particular stream gatie areal shares of all the classes.

is affected by this object’s output. Such information is The method is typically used to determine the areal

helpful during the calibration of hydrological modelsfractions of land use classes for all sub-basins.

¢ and the total area of upstream catchment.
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155 Step 5: Estimation of river cross- H

section properties z
Purpose A
Hydrological catchment models usually require river .

cross-section (x-section) information to be available fol
all modeled river reaches. This is because the propw

gatiqn a,nd attenuation of flood waves is cont_roll,ed tﬁﬁgure 1.6: Definition of basic properties of a river cross-
the river’s bed slope as well as the cross-section’s CQction P: Flow depth,A: Wet areaP: Wet perimeter). The
veyance (hydraulic radius, wet area, and roughness)hydraulic radius isk = A/ P.

In real-world river basins, x-section survey data are
usually available for a very limited number of reaches
only. Consequently, x-section data for all other reachesThe two factors4 and R in Egn.1.5are functions of
being part of the model domain need to be estimatedtte flow depthD (see Figl.6). The shape of these func-
estimates cannot be gathered from the elevation motlehs is determined by the x-section’s geometry. The
(see Secl.6.6, a spatial regionalization approach hasteady flow raté) is a function ofD as well andQ(D)
to be adopted. The designated methotl@pocat ch represents theating curve From Egn1.5it is also ob-
to perform this task ixs. r eachPar s. See R’s inter- vious that there is a functional relation betweg@rand
nal help for detailed help on this methods’s input argut. Considering that the storage voluriteof a reach
ments and outputs. Some additional background infevith length L equalsA - L, there are also functional

mation is provided below. relations@ (V) andV (Q), respectvely.
Int opocat ch, itis assumed that, for an individual
Hydraulic properties of a single x-section x-section, the characteristic functioA$D) and R(D)

can be approximated by simple power functions as in
According to Manning’s equation (Eqh.5), thesteady Eqn.1.6 & 1.7. In these equations, b, ¢, andd are

flow rate () is controlled by four factors: empirical coefficients to be identified by least-squares
fitting.
n The channel’s roughness (friction and turbulence) g
So The slope of the channel. A(H) =a- Db (1.6)
R The hydraulic radius.
R(H) =c¢- D* (1.7)

A The x-section’s wet area.
Cross-section estimation for arbitary sites

1 9 For reaches where x-section information is not avail-
@ n V- R A (1.5) able, a multi-step estimation procedure is applied by
. XS. reachPars. It aims at estimating the functions
Eqn. 1.5 assumes that the x-section has a compggins 1 6& 1.7rather than the actual geometry data.
shape and, therefore, the channel's roughness can be ds 1o first step, two *parent cross-sections’ are iden-

_scrlbed by a single value af. In real X-Sections, Vary- e from the pool of available survey data. These two
ing n values may be appropriate to describe the d'ﬁe(ffoss-sections are selected in a way that
ent resistance of the main channel and the flood plain

(Cunge et al.1980. However, the current version of 1 the parent cross-sections are located as close as
t opocat ch is not capable of handling such so-called possible to the reach of interest, and
compound cross-sections and always assumes a unique

1 .
n value™. 2. the 1st cross-section has a smaller upstream catch-

1Compound cross-sections may be analyzed with the softveared ~ MeNt area and the 2nd one has a larger upstream
scribed in Chap4 catchment area than the reach of interest.
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----- Linear reservoir

e River reach
X Cross-section
survey data %

@ Location without
data

Figure 1.10: Relation between the flow ratg and the stor-
age volumé/ for a linear reservoir and a river reach with an
Figure 1.7: Selection of parent cross-sections for interpoldaregularly shaped cross-section.

tion. In the example, the data from A and B would be used to

estimate the x-section’s properties at location Z.

known values for the bed slope, the roughness, and the
reach length.

It has to be noted that the above-mentioned approach
of weighted averaging assumes that the x-sections’s
flow capacity (i. e. the values of and R for a given
flow depth D) are (positively) correlated with the size
/ of the upstream catchment. In many cases, this appears

D D to be a reasonable assumption. However, the correlation
may be weak (or not exist at all) if
Figure 1.8: Interpolation of the cross-section’s characteris-
tic functions. Solid lines: Known relations for parent gos
sections. Dashed: Interpolated relation for a target ionat
without survey geometry data.

o the river basin’s geology is heterogeneous, or

e a significant spatial gradient in rainfall is present.

Thisis llustrated in Figl.7. Note that the two parent  |n those cases, it may be better to sub-divide the river
cross-sections are not necessarily located at the sasasin into zones of homogeneous geology/climate and
branch of the river net. to estimate the x-section characteristics separately for

In thesecond stepthe characteristic function$(D) the zones.
and R(D) are computed for the two parent cross sec- |t should also be noted that the assumed correlation
tions (solid graphs in FidL.8). between catchment size and flow capacity might not ex-

Finally, in thethird step, the characteristic functionsist where cross-sections were constructed or altered by
A(D) andR(D) for the reach of interest are determineuman action.
as a weighted average (dashed graphs inER®). The
applied weights are derived from the upstream catch-
ment areas. If, for example, the upstream catchmefample of the output
area of the two parent cross-sections was 5 and 10 km
and the reach of interest had an upstream catchment gfivexample output of thas. r eachPar s method is
km?, the information of the parent cross-sections woulhown in Fig.1.9. The data in that table can be used
be weighted by(7 —5)/((7—5) 4 (10 —-7)) = 0.4 and by hydrological models in various ways. Of special rel-
(10-7)/((7—5)+(10—7)) = 0.6, respectively. Note evance are the values in the column dVdQ. They rep-
that, internally, the characteristic functions for alesit resent the derivative of the reach’s storage volume with
are approximated by power laws (Eq@s5& 1.7). respect to the flow rate. This value (with the unit of

Once the functionsi(D) and R(D) have been es-a time) can be interepreted as the retention constant if
timated for the reach of interest, all other hydraulithe reach was treated as a (piece-wise) linear reservoir
properties can be derived using Manning’s equation atdg. 1.10).
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# Hydraulic properties of a reach for STEADY UNIFORM flow
#  Object ID: 365’

# Upstream area: 632.7

# Reach length: 34485.996
#  Bottom slope: 0.000812

#  Roughness: 30

# 1st / 2nd parent cross-section:
# IDs: 'xsEstim_in.extractedXS.xs5015.txt" / 'xsEstim_i n.extractedXS.xs5037.txt’
#  weights: 0.998 / 0.00156
# dists :  214865.7 / 195208.3
# up. areas: 627.39 / 4023.72

# Descr. of columns:

# Q: Stream flow (L/T)

#

#

#

#

Q

0

1

2

D: Normal depth, i.e. max. flow depth (L)
A: Wet x-section area (L"2)
V: Storage volume (L"3)
dvdQ: Est. derivative dv/dQ (T)
D A \Y dvdQ
0 0 0 96814. 34
0. 15 4.489  154817. 373 96814. 34
0.21 7.297  251631.715 91503. 91
5 0.327 13.871 478349.54 69669. 92
10 0.457 22.546 777510.074 56102. 11
20 0.639 36.651 1263931.218 45967. 99
50 0.995 69.66  2402299. 489 34986. 86
100 1.392 113.237 3905080. 393 28179. 45
200 1.946  184.069 6347792.32 23084. 84
500 3.031  349.858 12065191. 465 17571. 48
1000 4.238 568.699 19612163. 977 14151. 79
2000 5.925 924,423 31879638. 649 11593. 46

Figure 1.9: Example of an output file created kg.reachPars
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1.6 Practical hints Clipping The second step is to clip the grids to an
identical spatial window. The capabilities of clipping
1.6.1 Processing of raster data may be different in different GIS software. In QGIS

1.7.3, for example, one has to load the GDAL exten-

In addition to the routines mentioned in SEc5, the g4 \wjth this extension loaded, a 'Clipper’ functions
t opocat ch package provides many additional funGy 5y 5ijable in the menue 'Raster — Extraction’ which

tions to facilitate the preparation of gridded spatial inptg capable of clipping grid data. The spatial target win-
data. For example: dow of the clip operation can be defined either by an-

e geogrid. readAsci i : Reads spatial grids inother layer or directly by specifying the coordinates of
ASCII format. the target window's limits. For the Marikina catchment

(Philippines) for example, the following target window
e geogrid.witeAscii: Outputs spatial grids was used:
in ASCII format. Limit Value Defines border at

e geogrid. recl ass: For classification of nu- X1 289400  West
meric values in a grid. yl 1609000 South
X2 322200 East

y2 1641600 North

e geogrid.fill Gaps: Replaces missing cell
values based on a nearest neighbor search.

e geogrid. val uesAt Poi nts: Extracts data conversion Once the grids have been clipped,
from a grid for specified locations. they should be exported in ASCII grid format (see
e XS. extract DEM Extracts cross-sections fromsec'1'4.'2)' MOSt. GIS systems haye this functlor?al-
an elevation model. ity. If this format is not supported, it may be possible
to export the data in another matrix-based text format
See the R-package’s built-in help for the full set gind then to manually add (or modify) the header (see
provided methods. Fig. 1.2). A typically used file extension for ASCII grid
filesis. asc but this is not a true standard.

1.6.2 Making input grids consistent
Final check Last but not least, the exported ASCII

Some of the methods contained in thepocat ch  grid files should be opened in a (powerful) text editor
package expect multiple grid as input arguments. Thigd the first 5 lines of the header (see Sed.2 need
applies to thegeogri d. zones. conti nuous and g pe compared.
geogri d. zones. cl assified methods, for ex-  Although the same target window (or layer defin-
ample. In those cases, the grids must cover (exactqh@ that window) was used in the clipping operation,
the same area with an identical resolution. In othﬁrmay happen that the header information are not ex-
words, the first 5 lines (see Fid.4.2 of the corre- gctely identical. This is due to the fact that the clipping
sponding ASCII grid files need to be identical. Sincgmply removes cells outside the target window. It does,
the data may come from different sources, a sequenc@gfyever, not apply a real spatial transformation to the
processing steps is typically required to make the griglgta (which is more difficult) and, therefore, cannot cor-
spatially consistent. These steps are addressed in 4§ for spatial shifts in x- or y-direction being smaller
subsequent paragraphs: than the extend of a single cell.

A possible solution would be to apply a real spatial
Resampling The first step is to make the cell sizéransformation prior to clipping of the grids. A more
commensurate in all grids. This is typically known asonvenient workaround is to simply substitute the head-
resampling. For floating point grids like the DEM (biers in all grids by the header of one 'master grid’ (the
linear) interpolation approaches are appropriate. WhB&EM, for example). This approach works as long as
resampling integer grids (soil or land use data), otige first two lines in the original grid headers are iden-
must use nearest neighbor methods, of course, in ortleal (i.e. the grids have the same number of rows and
not to introduce 'fractional’ classes. columns). The simple copy & paste approach will in-
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troduce a spatial shift in two of the grids but the error  branch ends at some intermediate point of the main

should be less than the extent of a single cell. Thiswill  branch is not supported (see Figlifor an illus-

be tolerable in most situations (considering that a spa- tration).

tial transformation is an approximation as well).
After this step, the header information in the gri

should be identicab the very last digitwhich is a pre-

requisite to run some dfopocat ch’s methods.

d§nappingWhere two line features have a connection,
the coordinates of the connected end points need
to be exactly identical (to the very last digit).
When digitizing the lines manually, this camly

) ) be achieved by using the so-called snap function-
1.6.3 Creating a proper shape file ality provided by all GIS systems.

As mentioned in Sed4l a Shape file of line features[\|0 |OopsThe current version ot Opocat ch Only
representing the river network is required as an inputto  sypports tree-like river systems. Thus, flow splits
thehydr oMbdel Dat a method. If this file is created followed by junctions further downstream (i. e.
manually rather than being generated lmpocat ch’s loops) must not exist in the river net.

dem anal yze method, several aspects have to be

considered related to both attributes and geometry. Minimum length of reache#és a rule of thumb, line
features representing objects with a correspond-

ing catchment — namely reaches — should not be
shorter than about 4-5 times the cell size of the
input grids. Thus, if the elevation model has a
resolution of 100 mx 100 m, reaches should not
be shorter than about 400-500 m. This is due to
the fact that the shape file (vector data) is con-
verted to a grid (raster data) withiropocat ch'’s
hydr oMbdel Dat a method and too short line
features may get lost. Possible solutions for cases
where the natural river system contains critically
short reaches are discussed in Se6.4 Note that
line features to which no catchment should be as-
signed (which must be identified by an appropriate
entry in the attribute table’s class field) can be of
arbitrary length.

Attributes  The attribute table of the shape file must
contain at least two fields: An ID field and a class field.
The names of these fields can be chosen freely but rec-
ommended are 'id’ and 'class’, respectively.

The ID field must contain aniquevalue that identi-
fies each single feature in the shapefile, i. e. each single
reach. The ID field should be of type integer.

The class field should be of string type. It allows
to distinguish different classes of line features and to
convey this information t@a opocat ch. In a simple
river system, a useful entry in the class field would be
'reach’, for example, and this would be identical for all
features. However, it would also be possible to include
special features of a river network (such as reservoirs)
in the shape file. For those features, a different class
name (such as 'reservoir’) would have to be entered@tientation of linesThe orientation of the individual
the class field. line features is of no importance. Thus, it is OK

to digitize lines in upstream or downstream direc-
Geometry and topology The conditions that must be tions and mixing both directions in the shape file
fulfilled in terms of the features’ geometry and topology  is OK too.
are as follows:

Single-partlines onlySome  GIS systems supporl.6.4 Handling very short reaches

multi-part lines (line features with gaps in be- ] i
tween). These must not appear in the shal dense drainage networks, reaches may exist whose

file. ength is critically short (Fig1.12. Critical means
that the length is less than about 4 times the resolution

End-to-end connectionkine features must always beof the input grids (see Sed.6.3. Those very short
connected end-to-end. Thus, a line must not enehches may get lost during vector-to-raster conversion
at an intermediate vertex of another line. This also the hydr oMbdel Dat a method and opocat ch
implies that junctions are always formed by 3 (awill generate an error because no catchment could be
more) individual lines whose ends share the sargenerated for some of the reaches contained in the shape
coordinates. The alternative model where a sidite.
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Not OK!

Tributary 2

:  Critically
: short reach

Reac.h_S’

Reach 1 :
Tributary 1

A

Figure 1.12: Typical example of a critically short reach in a
dense river network.

Figure 1.11: Left: Proper junction formed by three individ-
ual reaches (identified by different colors and styles).hRig
Improper junction with a tributary ending in the mid-seatio
of another reach.

short reaches to 'shortReach’ or ’link’, respec-

There are several possible solutions to this problem: ) )
tively. Most GIS systems provide a suitable tool

Increasing the grid resolutiorBy resampling the ele-

vation model (and all other input grids) to a finer
resolution, the reach lengths increases relative to
cell size. Consequently, there is a higher chance
that even short reaches are retained in the vector-
to-raster conversion. The drawback of this ap-
proach is, however, that the input grids become
much larger and the computation becomes slower.
For example, reducing the cell size to 1/2 increases
the number of values in the data matrix by a factor
of 4.

Removal of the short reachesn alternative would be

to edit the shape file and remove the critically short
reaches. In the example shown in Figl2 this
would mean that the short dashed line is deleted
and the junctions up- and downstream of that reach
are merged into an artificial junction with three in-
flows. The drawback of this approach is that man-
ual work is necessary. Also, the shape file does

to do this sort of table column calculations using
expressions. One can then infotrapocat ch’s
hydr oModel Dat a method that no catchments
should be build for objects of that special class.
This essentially solves the problem, because (like
all features not having a catchment), the short
reaches are excluded from the vector-to-raster con-
version. As a consequence, however, the newly
introduced class must also be declared and imple-
mented in the rainfall-runoff model. This class
could either provide the same functionality as the
normal reach class or just have the functionality of
a link (which simply copies its input to its output).

If the shape file is generated bppocat ch itself
(dem anal yze method), one may specify a crit-
ical reach length to automatically assign a different
class name to short reaches.

o) . . .
longer represent the actual network. Finally, if 3'6'5 Special features in the river net

very large number of short reaches is deleted, thig discussed earlier, the shape file may also contain
may also lead to a systematic error in travel timegther objects than river reaches. Such 'special’ objects

Increasing the reach lengtfihe very short reachesmUSt

could also be made longer manually in order to1 pe represented as lines, even if the objects are ac-

increase the probability of a successful vector-to-  tyally punctual (like gages or control structures,
raster conversion. The disadvantages are similarto for example), or have an areal extent (reservoirs,

those related to the removal of the short reaches.  |akes, etc.). This is due to the nature of the shape

file format which restricts the contents to a single

Using a separate clasg&nother option which is rec- . .
feature class (pointsr linesor polygons).

ommended in most cases is to declare the short
reaches not as reach objects but as instances of & pe jndicated by an appropriate entry in the attribute
different class. An appropriate name for this class  5pje’s class field.

might be something like 'shortReach’ or ’link’.

This is simply achieved by changing the entry in Furthermore, if a catchment should be assigned to
the attribute table’s class field for the criticallthese objects (as in the case of lakes, for example),



1.7 TODO 19

one needs to makeopocat ch’shydr oMbdel Dat a Reach 1

method aware of this fact.

# id class

reach
reach
reach

Reach 3 Reservoir 100

Example 1: A gage Reach 2

100 reservoir

In a standard hydrological model, one would probably v
not treat gages as model objects. One would rather sim-

ply let the model output the flow rate of the reach to (S Reach1 id  class
which the gage is attached. In operational models, how- iy reach
ever, is may be useful to treat gages as objects, because N N 20; reach

S~ LS 3 reach

i i i Reach 3 y,
then, a gage may have some functionality. Typically,rReac TReach2 101 ik

the observed flow would be defined as an external inpu S, N\
variable of gage objects. In addition, some user—defined* Reservoir 100
rule would be implemented that controls whether the ) o _
simulatedor observed flow rates are submitted to thg/9ure 1.13: Representation of a reservoir with two inflows
reach downstream of the gage. in a map (top) and in the input shape file (bottom).

In the shape file, a punctual gage object could be rep-
resented by a very short line feature (sayoflmlengtla)ata from digital elevation models. For that pur-
The resulting error in the system’s total reach IengHbse thet opocat ch package provides a method

would then be negligible. Xs. ext r act DEM See the R-package documentation
for more information.

100 reservoir

Example 2: A reservoir

Some more effort is necessary to include objects with7  TODO

an areal extent into the shape file of line features. This

is (_Jlerr)onstra.ted in Fig..lgwithl the gxample ofareser-{ 71 HRU support

voir with two inflows. In situations like these, one must

chose one line to represent the actual object. In the &he current version af opocat ch doesnot generate

ample, this is the line with ID 100. It is digitized inthe information needed by rainfall-runoff models using

a zigzag manner to roughly cover the reservoir’s suhe hydrological reaction unit (HRU) approach. This is

face area. This is done with the aim of increasing tliiecause of the fact that, so far, thehs e-based hydro-

chance that the reservoir’s 'direct’ catchment (i. e. tHegical models are intended to be used in operational

area draining to the reservoir's shore line) is propergrecasting. Such models typically need to be sim-

estimated from the elevation model. pler than more process-oriented models for the sake of
To establish the original inter-connection, an artiftomputational efficiency. However, it is not difficult to

cial object with ID 101 is introduced. It is defined as alett opocat ch generate input for HRU-based models

object of a separate class, here named ’link’. The fur@nad a future version might support thisopocat ch’s

tionality of this class is to simply transfer data. In theource code would have to be adapted in two ways:

example, this link object redirects the outflow of reach

1 to a single inflow location for the reservoir without 1+ Sil @nd land use information need to be merged
introducing a time lag. into a single map prior to the calculation of areal

shares with respect to the sub-basins using the
geogri d. zones. cl assi fi ed method. This
1.6.6 Extraction of river-cross sections could be done, for example, by multiplying the soil
from elevation models code by a factor of 1000 and then adding the land
use code. Then, the code of a HRU consisting of

In Sec. 1.5.5 it was mentioned that data on river  sojl type 5 and land use type 12 would be 005012.
cross-section geometries are required for the set-up

of many hydrological models. Since survey data are2. In thehydr oModel Dat a method, an array of
usually scarce, it may be desireable to extract such HRU-objects must be assigned to all reaches (and
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possibly further objects).

At present, a single

catchment object is assigned only.



Chapter 2

R-package for model optimization fops)

2.1 Purpose formattedread statements and may be incompati-
ble with mops.

The R-packagerops provides a humber of methods

to facilitate the optimization of model parameters. The echse-based models generally comply with all of

methods may be useful in the context of the conditions listed above.

e model calibration.

_ _ 2.2 Installation
e updating of operational models.

Thenops package is provided as a tarball. The pack-
age file name isrops_x. y. tar. gz where x.y is a

The methods provided in th’mps package are de-VerSion number. Sekneis (20120 for details on the

signed for the following conditions: installation procedure.
Note that therops package depends on another R-

e The model, whose parameters are to be optimizguhickage called hs which allows for latin hypercube
must be an executable file. In practice, this can lsampling. If thd hs package is not installed already, it
an executable built from source code (C++, FOReeds to be downloaded and instalpgtbr to installing
TRAN, etc.) or a shell script. If it is a shellnmops.
script, it typically calls an interpreter to process

code written in a script language (R, Python, etc.& 3 Standard documentation
e The executable must read the parameter value.s

from plain text files. Thus, parameter values muédter the mops package has been loaded with the R
not be read from binary files or passed as corgommand
mand line arguments.

e optimization studies.

l'i brary("mops") I

e The input parameters to be optimized must & . . ,
floating point numbers. Internally, of course, the & list of all provided methods can be generated with

model can apply any kind of type conversion (ty he| p( package="nops") I
ically to integer or logical).

The documentation of the individual methods can be

e The text files holding the parameter values ma : :
be of arbitrary structure. However, the executab ésplayed by typing the question mark followed by the

must read the numbemsnformatted In other o C of the method, for example

words, when reading a numeric value of or ?nodel Error_MCS I
for example, it must accept all of the following
character representatiohs1. , 1. 0, 1. 0e+00, As always, the standard documentation for the meth-

0. 1e+01. Note that legacy code sometimes usesls is rather short. New users probably want to read

21
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the following sections to get a better understanding of Initial set p
the general concepts and the dependencies between the
methods in therops package.
Collection of Add Y
. f-values -
2.4 Theoretical background for previous p 3
oy UseinO
2.4.1 Goal of optimization |
Propose NO_ A inimum>>_Y€S_ Accept

Optimization generally refers to the minimizatfoaf new set p solution

the value of a function whose value depends on one
or more parameters. This function is called tigec- Figure 2.1: Basic outline of an optimization method.
tive function Let's write the objective function a§(p),

with f being the function’s name andbeing a vector

?

Generate n random

of parameters. In the special case of one-dimensional setsp, ... p,
optimization,p is simply a vector of length 1. ¢
The goal ofany optimization procedure is to find a foriin 1:n

set of values for the parametesshat minimizes the

Save p, and f(p,)
value off. S to result file

Example 1 (minimization, 1-dimensional): Deter- Figure 2.2: Basic outline of Monte-Carlo simulation.

mine the optimum dosage of a medicine for malaria pro-

tection that minimizes the total number of death from

both infection and serious side effects (number of to f for other values op. The most important distinc-

casualtiesp: dosage). tion is betweendeterministiaandstochastialgorithms.
Some examples and references for both types of strate-

Example 2 (maximization, 2-dimensional): Deter- gies can be found in the help text of Rpt i mmethod.

mine the amounts of fertilizer and water to maximize As opposed to ’complete’ optimization strategies, the

the yield of a tomatoe fieldf¢ yield, p: amounts of technique of Monte-Carlo simulation does not identify

fertilizer and water). a single optimum parameter set. Instead, the objective
function is simply evaluated for a large number of ran-
2.4.2 Optimization methods dom parameter sets (Fig.2). It is then up to a human

to inspect the output and to draw conclusions on the
Depending on the nature gf(non-linearities, disconti- suitability of parameter values.

nuities, local minima, etc.) and the number of unknown
parameters irp, the optimization problem is more or

less difficult to solve. Unfortunately, there isno general 4 3 Model error as objective function
strategy that performs best in all cases. In fact, it is not

even guaranteed thaéobal minimum of f is found at |n the context of a dynamic simulation, the objective
all. function measures the deviation between a simulated
One thlng which is common to all Optimization methtime series (produced by the mode|) and a Correspond_
ods is thamultiplecalls to f for varying values op are ing time series of observations. Generally, the deviation
necessary (bold arrow in Fig.1). Only then, the effect (synonyms: model error, performance, goodness-of-fit)
of a change in the parameter valug¢)n the value of depends on the values of the model's parameters. It may
J can be detected. be helpful to see that this is very similar to the com-
The basic Strategies of Optimization are distingUiShﬂﬁbn case of f|tt|ng a linear model to a set of X'y-data

by the way of how a new proposal for the valuepiis (Fig. 2.3). The typical differences are:
generated, given the information from the previous calls

1To solve a maximization problem, the objective functioniie-s ~ ® |_n dynamic modeling, the x-axis represents the
ply multiplied by —1. time.
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o Observed -~ Model output Table 2.1: Interior of an objective function in the context of
dynamic modeling. It is assumed that the model reads all pa-
rameter values from text files.

# Task

1 Getcurrent parameter gefpassed via the fun-
cion’s argument list).

2 Update the model’s input files with the current

Figure 2.3: Goodness-of-fit for a dynamic simulation model values inp.

(left) and an empirical linear model (right). 3 Runthe model.

4  Read the model output (a time series).

e Real-world dynamic models often have more pa—5 Read observed data.

rameters than the linear model which has only 2  Compute the model error from the data read in
(slope and intercept). steps 4 & 5 using a suitable mathematical mea-

sure.
Return the result.

Discharge
Car size

Time Hair length

¢ In many dynamic models, the relations between7
parameter values and the output are non-linear.

¢ In the case of dynamic simulation models, numer-
ical methods are required to determine a set of opPd compensations, non-continuous model behavior, or
timum parameters (see S&t4.9. For the linear the existence of local minima. The alternative is the
model, an analytical expression exists to directlys€ of stochastic algorithms. Unfortunately, stochastic
solve for slope and intercept. optimizers usually come with a number of algorithms
parameters which affect convergence and computation
The deviation between observations and the corignes. If established general-purpose defaults do not
sponding simulated values can be quantified by a \&ist, the estimation of these algorithm parameters is a
riety of mathematical measures. In the case of Iine@romem on its own. Finally, a manual calibration by
fitting (Fig. 2.3, right), the sum of squared errors (SSE}jal-and-error is often not practically feasible and the
is most often used. In dynamic modeling (F23, left),  results have the reputation of being subjective.
measures like the RMSE (root mean suared error) andrherefore, it is sometimes a good idea to fall back on
the Nash-Sutcliffe index are usually preffered. They agge robust and straightforward concept of Monte-Carlo

based on the SSE as well but the values are more cgffnylation (Fig2.2). Some advantages of Monte-Carlo
venient to Interpret. simulation are:

In the context of dynamic modeling, the interior of

a objective functionf(p) typically contains the steps *® ltsimply cannotfail as long as the tested parameter
listed in Table2.1 sets do not cause invalid numeric results.

) _ _ _ e There are no algorithm parameters.
2.4.4 Semi-automatic calibration
e One can learn from the output about the

Environmental simulation models often have a large (in)sensitivity of parameters, even if the model is a
number of conceptual parameters whose values have plack box.

to be calibrated based on observations. Without hav-

ing a deeper understanding of the model’s functionin _Especially useful is the concept of sequential Monte-
i. e. the underlying equations, this is not a trivial taséarlo_simulatior_\. This concept can be described by the
Even if the equations are known, multi-dimensiond@llowing set of instructions:

non-linear optimization remains a challenge and s
cess is not guaranteed. The classic, deterministic op-
timization algorithms may fail for a number of rea-
sons, such as truncation and round-off problems, insém-Visualize the results from step. For each varied
sitive parameters, complicated parameter interactions parameter, a scatter plot should be created with the

Carry out a Monte-Carlo simulation with wide sam-
pling ranges for all parameters.
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parameter value on the x-axis and the model error
on the y-axis.

c¢) Inspectall plots created in stéplf a structure is vis-
ible in a plot, indicating an optimum range for the
particular parameter, modify the sampling range of

X Template file R-vector with updates
that parameter. Usually, the sampling range can be _ _ _
T parami {pi} c(pl=4., p2=0.5, p4=1.)
chosen narrower (unless the initial range was not paran2 {p2}
wide enOUgh). param3 0.95 \*
peemEd: {9l Result file
d) Return to step, using the updated sampling range. s S I
param2 0.5
This semi-automatic approach to calibration has been param3 0.95
successfully used in hydrological modeling (see, e. g. izzg Lo
Kneis et al, 2012. It is certainly not among the most '
efficient strategies. However, the chance of complell.e L
. . . . igure  2.4: Example  application  of  the
failure is very low. Finally, with the above approach

itb isible whether th R bl Ué)date_template method.  Here, the characters to
it becomes visible whether the optimization problem | entify the start and the end of a placeholder ‘§te and

well behaved or of the nasty sort. Users of unsupef=
vised optimization algorithms can only hope for a wel
behaved problem or guess on the cause of failure.

A practical example of parameter estimation using
sequential Monte-Carlo simulation can be found in
Sec.2.64

, respectively.

2.5 Important methods inmops

2.5.1 update_tenpl ate

As illustrated in Figs2.1and?2.2, optimization meth-
ods and Monte-Carlo simulation involve many suc- Template file R-vector with updates
cessive of evaluations of the objective functions for <two> to the c(two=2., result=4.)
different parameter values. In each evaluation, the IPTS ¢
model’s input files need to be updated (recall Ta- :::Zli N _
ble 2.1). For this purpose, theops package provides Result file
theupdat e_t enpl at e method. 2. to the

The method takes a template file andeamedvector power of
of numerical values as input. It then scans the template i ”
file for the occurrence gblaceholders A placeholder

1S alll string enck:sefdfby twg delflg%n:’?‘ted charactg;s, t)l'-rl)g-lure 2.5:  Another example application of the
ically some sort of fancy brackets like}, [] or <>. update_template method.  Here, the characters to

Theupdat e_t enpl at e method tries to replace eV-jgenyify, the start and the end of a placeholder ‘ae and
ery placeholder in the template file by the numerical«  respectively.

value of a matching element from the input vector. A

matching element is one whose name is identical to the

placeholder’s central string, i. e. the string between

the designated characters. The mode of action of the

updat e_t enpl at e method is best demonstrated by

the examples in Figg.4and2.5.
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Although theupdat e_t enpl at e can be called in  This partial differential equation model has two pa-
isolation, it is mainly used as a sub-routine in otheametersd andwu. For certain conditions, Eq2.1 has
high-level methods of theops package. the analytical solution presented in EQn2.

2.5.2 nodel Error_nulti Dim

N m —(z—u-t)?
The nodel Error _nul ti Di mis the central high- c(z,t) = A vindl emp( 4-d-t )
level method of theops package. It represents a com-
plete objective function. For a given parameter set, the (2.2)
method is able to perform all the steps listed in Ta-
ble2.1 It can directly be used together with R’s generic With the additional symbols
optimization methoapt i m t  Time (s)

m  Mass (g)

2.5.3 nts_runandncs_eval A Wet cross-section area in

. This solution assumes that
The methodsncs_run and nts_eval provide

a complete framework for Monte-Carlo simulation. e The injection of mass at = 0 occurs in an in-
nTts_r un generates the random parameter sets and car- finitesimally short time span.

ries out all the simulations. The functiorcs_eval o o ]
calculates the corresponding model errors and create® The mass is instantly distributed over the entire
graphics to summarize the results of Monte-Carlo ex- Cross-section.

periments. A complete example for the use of these

The flow i if
methods is provided in Se2.6 e The flow is steady (constant rate) and uniform

(constant cross-section geometry).

The behavior of the model is illustrated in Figs6

2.6 Example: Monte-Carlo simu- and2.7for constant values af=100,a=1, =30, and
u=0.5. Fig.2.6 shows the time series of concentration

lation (chemographs) that one would obtain by frequent anal-
. ysis of water samples taken at a particular river station.

2.6.1 Model equations To get a picture as in Fig2.7, one would have to or-
This section introduces the practical use of t za;n:izveefynchronous sampling at multiple stations along

ncs_run method to perform a Monte-Carlo simula-
tion. For the purpose of demonstration, we consider _ _

the fairly simple 1-dimensional advection-dispersiod.6.2 Model implementation
model (Eqn2.1). It describes the 1-dimensional (IonThe C++ source code listed in Fig.8 implements

itudinal) transport of dissolved, non-r ive matter in . : :
gitudinal) transport of dissolved, non-reactive matte a simulation model based on the equations from

ariver. Sec.2.6.1 It solves Eqn2.2for a fixed station: and an
array of times. Thus, it computes a chemograph as in

dc 92¢ dc Fig. 2.6. For compatibility with thexops package, the
a Yoz Yo (2.1) executable reads all input data — including the values of

the two parameters andd — from a text file.

To build an executable from the source code in
Fig.2.8, the GNU C++ compiler can be used (s$@eeis
2012h for mode info). Assuming that the source code
d Dispersion coefficient in x-direction is saved in a file 'adModel.cpp’, an appropriate com-

(m?/s) mand line for compilation would be:
u Average flow velocity in x-direction
(m/s)

¢ Concentration (g/f)
x  River station (m)

g++ -l stdc++ -0 adMobdel adModel . cpp I
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#i ncl ude<i ost r ean»
#i ncl ude<f st r eanr

#i ncl ude<stri ng>

#i ncl ude<cmat h>

usi ng nanmespace std;

/I Analytical solution of the 1-dimensional convection-di spersion eqn.

doubl e c_xt (const double x, const double t, const double m const double a,
const double d, const doubl e u)

{ return(m a/sqrt(4.*3.1415+xd+t) * exp(-powm x-uxt,2.) / (4.xd*t))); }

/I Driver program
int main (int argc, char x*argv) {
M Read file names from command line /11T M
string crmd(argv[O0]);
if (argc !'= 3) {
cout << "Usage: " << cmd << " inputfile outputfile" << endl; return(l); }
string name_ifile(argv[1]);
string name_ofile(argv[2]);
I Read parameters from input file /11T M
ifstreamifile(name_ifile.c_str());
if (lifile.is_open()) {

cout << "lnput file '™ + nane_ifile + "’ not found." << endl; return(l); }
double x, m a, d, u, tmax, dt;
try {

string key;

for (unsigned int i=0; i<7; i++) {
ifile >> key;

if (key == "x") {ifile >> x;} else if (key =="nl") {ifile > m}

else if (key == "a") {ifile >> a;} else if (key == "d") {ifile >> d;}
else if (key == "u") {ifile >> u;} else if (key == "dt") {ifile >> dt;}
else if (key == "tmax") {ifile >> tmax;}

el se {throw("Unexpected paraneter in input file.");}

}
} catch(...) {

cout << "Cannot read data from'" + nane_ifile + "' ." << endl; return(1); }
ifile.close();
[N Open output /I M

ifile.open(nanme_ofile.c_str());
if (ifile.is_open()) {
ifile.close();
cout << "Qutput file '™ + name_ofile + "’ exists." << endl; return(l); }
of stream of il e(nane_ofile.c_str());
if (lofile.is_open()) {

cout << "Cannot open file " + nanme_ofile + ""." << endl; return(l); }
I Print solution for the times of interest ///// i
doubl e t=0.;
while (t <= tmax) {
if (t ==0.) { ofile << "t\tc" << endl <<t << "\t" << 0. << endl; }
else { ofile <<t << "\t" << c_xt(x,t,ma,d,u) << endl; }
t=t + dt;
}
e SO S aw M
ofile.close();
return(0);

Figure 2.8: C++ source code of the advection-dispersion model (file: adiéficpp).
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u 0.5

d 50.

a 15.

m 5.

x 1000.

t max 7200.
dt 120.

— x=500
= 1500
i: 2500 Figure 2.9: Sample input file for the model defined in

--- x=3500 H
— a0 Fig.2.8

c(x,t)

-

o The command should create an executable ’'ad-

ASEERERRC - ’, == Model’ (possibly with an appropriate file name exten-

0 2000 4000 6000 sion). _
To successfully run the model, two command line ar-

t guments must be passed to the executable. The first
argument is the name of the input file containing all in-
Figure 2.6: Solutions of Eqn2.2at a fixed set of river stationsPut data, including the values of the parameteasidd.
for variable times. The second command line argument is the name of the
output file containing the simulated concentrations. An
example of an appropriate input file is given in F2g0.
The model expects to find the definition of a single input
value per line. Each line should start with a string, rep-
resenting the name of the input item, followed by one
or more blank characters, followed by the value. The
meaning of the values, d, a, m, andx is clear from
Egns.2.1and2.2 The two additional values define the
array of times of interestimax defines the upper limit
of the simulation time (starting at zero) adtispecifies
the temporal resolution of the output. Both values are
in units of seconds. The value @éf should be less than

0.00 0.05 0.10 0.15

0 — =900 tmax to produce (any) useful output.
S t= 1800
t= 2700
= S)' | -=-- t=3600
X © \ 2.6.3 Observed data
© n 3 \V‘,
=2 Eqgn.2.2can be used to determine the average flow ve-
s | \ R locity » and the longitudinal dispersion coefficiedit
S T ' ' ' ' ' from tracer experiments. We assume that the set of ob-

0 1000 3000 5000 servations given in Fig2.10was obtained in such an

« experiment. In addition, we assume that

e The observations were made at river station
Figure 2.7: Solutions of Eqn2.2 at a fixed set of times for 1000 m while the injection took place a+0.
variable river stations.

e The river's wet cross-section areadts 15 n?.

e The known input mass of the tracer was 5 g.
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time conc sets the working directory. When using a copy of the
900 0. 0001 code, the working directory needs to be adjusted to the
1200 0. 0002 local settings.

1800 0. 00032

3000 0. 00015 ) _ _
3600 0. 0001 PART 1 In this part, the names of all files are defined

which are created in part 3 of the script. This includes
the model’s input file (which is generated from a tem-
Figure 2.10: Time series of observed concentrations (file: ofplate) and the model’s output file. It may be convenient

servations.txt). to use temporary file and folder names.
u {u} PART 2 In this part, two tables are created (as
g {12} dgt a. f r ame objects). The first table dgfines the sam-
ms. pling ranges of the parameters and is passed as ar-
% 1000. gumentr anges_t abl e to thents_run method in
t max 7200, part 3. The second table holds information required
dt 120. for the automatic editing of the model's input files.

It is passed as argumenpdati ng_t abl e to the

ncs_run method in part 3. In this example, the ta-
Figure 2.11: Template parameter file with placeholders fdole consists of a single row because only a single file
the values of the parametarsandd (cf. Fig. 2.9). needs to be updated.
In the case of models with a larger number of param-
. eters or multiple input files that need to be updated, is is
2.6.4 Monte-Carlo experiment better style topput tEe contents of the two tabﬁe(s) in text
Preparation of template file(s) file(s). Then, one can use R'®ad. t abl e method to

read the data and instantiate thet a. f r ane objects.
The first step of setting up a Monte-Carlo simulation is

the preparation of parameter template files. Since

model (Fig.2.8) reads all data from a single file, ngy'&RT 3 This part contains the call to thrain_ncs .
have to prepare a single template file only. To do s ethod. Information on all arguments can be found in

we simply take the sample file from Fig.9and substi- the mops package’s help files. Some addmpnal hints )
tute the values of the parameters of interest by approﬂﬁl—ated to the more complex arguments are given below:
ate placeholders. Using curly braces as the designated
characters for placeholders, an appropriate template fild
could look as in Fig2.11 In this example, the place-
holders are named like the parameters. This is not a
must but a simple and useful convention.

In this example, it is assumed that the file name
of the model executable is 'adModel’ and that
the file resides in the working directory (argument
nodel _pat h). The actual name depends on the
output created by compiling the source code from

N ) o Fig.2.8
Writing a driver scriptin R

e The model executable expects twonamecom-
mand line arguments (see code in Fg8). The
two expected file names are supplied in @am
namedvector to the argumemtodel _ar gs.

The next step is to write an R script to call the
r un_nts method from therops package with appro-
priate arguments. For our example, such a driver script
is shown in Fig2.12 The R script has been structured

into several parts using comment lines. The subsequen} |, this example, it is assumed that the observed
paragraphs provide some details on the contents and y5¢4 (Fig.2.10 reside in a file named 'observa-
meaning of these parts. tions.txt’ (argumenbbs_fi | e). Furthermore, it

is assumed that this is a TAB-separated file with
PARTO This partaccounts for initial actions. ltclears  the time in column 'time’ and the observed values
R’s memory of variables, loads tips package, and in column 'conc’.
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0.00030
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rmse
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Figure 2.13: Output graphics created by the R code frorRigure 2.14: Output graphics created by the R code from
Fig.2.12 Fig. 2.12 after narrowing of the sampling ranges if 0.35
...0.65;din 10... 100).

e The functions assigned to the arguments
simtinmeConv and obs_tineConv are This option was already discussed in S2el.4
identical. They convert a numical time into a  The result of such a re-run with narrowed sampling
value of R'sPOSI Xct class. Here, the numerical ranges is presented in Fig.14
time is the number of seconds after tracer injection
(see Fig.2.10 and the source code in Fig.8). 2. Re-runthe Monte-Carlo experiment with a higher
It does not matter which base time is used (here number of random samples.

1970-01-01 00:00:00) as long as it is identical for

the observed and simulated time series. 3. Use the current estimatesof= 0.5 andd = 50

as initial values for one of the true optimization
e The value of the function assigned to argument algorithms provided by R’spt i mmethod.
gof _functi on is returned as aamedvector.
Using a named vector has the advantage that this

name appears in the result file. 27 Using nops with an echse-

PART 4 This final part callsnts_eval to analyze based model

and visualize the result of the Monte-Carlo experiment.

For each parameter included in the experiment, a thBiS section contains some practical hints for
marginal distribution of the model error is plotted ithe use of nops together with an echse-

2.14). These plots are also known as ‘dotty plots’.  the  methods nodel Error_multiDim and
nodel Error _oneDi m which have many argu-

Inspecting the output ments in common.

The graphical output from the R code (F&J19 is pré-  command line arguments An echse-based model
sented in Fig2.13 In this example with only two pa- yenerally expects some mandatory command line argu-
rametersq andd), some structure is visible in the plotsants of the form ’key=value’ (sekneis 20123 for

of the marginal distributions. From the left SUb'f?guredetails). All optional command line arguments (con-
one may conclude that a parameter value ef 0.5 fits g ration data) are of the 'key=value’ form as well.
best with the observation data. The right sub-figure $ferefore, the value assigned to the method’s argument
Fig. 2.13suggest that reasonable values for the dispgi5qel ar gs must always be aamedvector. A min-

sion coefficient/ are probably found in a range betweepy,,m exaple, covering only the mandatory command
10 and 70. In order to refine the estimate, one could jfye arguments is given in Fig.15

different options:

1. Re-runthe Monte-Carlo experiment with narroweZlean-up functions An echse-based model never
sampling ranges. For example, the sampling rangeerwrites existing files. Therefore, when carrying out
for parameteri could be restricted to 0.. 100. a series of model runs, there must be a mechanism to
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dipipid b PART O SR e L P L T e e

rm(list=ls())
l'ibrary("nmops")

# Set working direcory (ADJUST TO YOUR SETTINGS 1)
setwd( "~/ progress/ echse/ echse_doc/tex/tool s/ current/chapters/ nops/fig/ncs_exanple")

sttt PART L s tHE R SR i T
# Define variables for folders and files

dir_run= paste(tenpdir(),"run", sep="/") # Output of current run

dir_nts= paste(tenpdir(), "ncs", sep="/") # Output of MCS

if (!file.exists(dir_run)) dir.create(dir_run)

if (Ifile.exists(dir_nts)) dir.create(dir_ncts)

ifile= paste(dir_run,"input.txt",sep="/") # Model input (generated from template)
ofil e= paste(dir_run,"output.txt",sep="/") # Output file of the model

BT PART 2 S8 R R A et L
# Table with sampling ranges for the parameters
rangeTbl = data. frane(paraneter= c("u", "d"), mn= c(0.1, 10), max= c(2.0, 200))

# Table defining the files to be edited automatically
updat eTbl = data.frame(file_tenplate=c("in_tenplate.txt"), file_result=c(ifile))

HHHHHHHH PART 3 S e
# Call to the Monte-Carlo method from package mops
ncs_run(
ranges_t abl e= rangeThbl ,
nSanpl es= 500,
updati ng_t abl e= updat eThl ,
nmodel _pat h= "./adModel ", # on Linux, the "./* is required
nmodel _args= c(ifile, ofile),
outdir_nodel = dir_run,
outdir_nts= dir_nts,
si | ent =FALSE
)

Hitt i PART 4 St I T S R R
# Analyze the results of all model runs and create useful grap hics
ncs_eval (
outdir_nts= dir_nts,
obs_files= c(all="observations.txt"),
obs_col sTine= "tine",
obs_col sVal ue= "conc",
obs_col sep="\t",
obs_ti meConv= function(x) { |SOdatetinme(1970,1,1,0,0,0) + x },
simfil e= basenane(ofile),
simcol Time= "t",
si m col Val ue= "c",
simcol sep="\t",
simtimeConv= function(x) { I|SOdatetime(1970,1,1,0,0,0) + x },
obs_nodat a= -9999,
peri ods= dat a. f rame(begi n=c(), end=c()),
gof _function= function(obs,sin) { c(rnse= sqrt(nmean((si mobs)”2))) },
showsSt at s=TRUE
)

[T "o '

print(paste("CQutputs, incl. a PDF with graphics, are in '",dir_nts,"".",sep=""))

Figure 2.12: R code to run the Monte-Carlo experiment usingritb@s package.
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nodel _args= c(file_control ="nyMdel .cnf", simcol Time= "end_of _interval"
file_log="mnmyMdel.log", simtimeConv= function(x) ({
file_err="errors. htm", as. POSI Xct (strptinme(x,
format _err="html ", silent="true") "oor- % Yl % OVt U8, t z="GMIT") ,
tz="Gur")
}

Figure 2.15: Example, demonstrating the use of the

model_args argument.
Figure 2.16: Appropriate values of the arguments
sim_colTime andsim_timeConv  when usingmops’s

delete the output created by the previous run. By assigmethods with aechse-based model.

ing a proper function to the argumeritanc_fi r st

and an appropriate value tmor eArgs_first such _ ) ]

an automatic clean-up may be accomplished. AlterdB2king mistakes. In many cases, the cause of failure

tively, the clean-up may be done right after a model rupfiould be obvious from the generated error messages.
by supplying an appropriate function founc_f i nal  However, there are situations where it may be difficult

and value foror eAr gs_f i nal . to locate and identify the actual problem. Therefore,

In some cases, a complete removal of the model o§2Me gengral guidelines _fqr troubleshooting are give_n
puts after each run may be undesired. For example, dpthis section. More specific problems are addressed in
might be interested in the actual time series output pre€¢-2-8-2 _ _ ,
duced by the individual runs of a Monte-Carlo simula- 'f ©n€ ofmops’s high-level methods involving a call
tion. Then, renaming is usually an appropriate alterniQ. S|mul_at|0n model fails, one sh_ould first try to find
tive to deletion of files. This can be done, for exampl@Ut &t which step of the computation the problem oc-
by supplying appropriate code asnc_fi nal and a curred. There are four possible categories a—d with typ-

suitable value fonor eAr gs_f i nal . In those cases, (&l Symptoms:
it is often convenient to use a string representation of the _ _
system’s time for the generation of unique file names(@) Stop occurs prior to running the model

e The model does neither produce the desired output

Files created by the model Output files created by  nor any other files (log files, files with error mes-
anechse-based model conform to some simple stan-  gages, etc.).

dards which facilitates the use wbps. In all time se- _

ries output files, the column with time information is e A return code of the model isotreported.

named 'end_of_interval’. Thus, this is the string to be

assigned to the argumesit m col Ti me (Fig. 2.16. (b) Stop occurs when calling the model

Furthermore, the time information printed kghse- _

based models is always in ISO 8601 format (YYYY- ® AsSincase (a), the model does not produce any out-
MM-DD hh:mm:ss) with date and time separated by putfiles.

a single blank character. This is also the default for-, A non-zerareturn code of the modé reported.

mat used byrops. Therefore, the actual argument for

si m ti meConv can be omitted in the call to meth- . .
ods likenodel Err or _MCS. If, even though, a time- (c) Stop occurs while running the model

conversion function is specified it should be defined ase The model produces a file with error messages

in Fig.2.16 and/or a log file whose entries indicate early ter-
mination.

2.8 Troub|eshooting ¢ A non-zerareturn code of the modé reported.

2.8.1 General recommendations (d) Stop occurs after running the model

The methods contained in thops package perform e The model produces the desired output files and
quite complex tasks and there is a high potential for possibly a complete log file.
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e A return code of the model isotreported. parameter values may be incompatible with the initial
_ . ~ value(s) of state variable(s). If, for example, the fictive
Note that (b) is a quite common case. It typicallparameter 'minTemperature’ has a value of 5, problems

occurs if the model is called with invalid or incom-are waiting to happen if a related state variable 'temper-
plete command line arguments. In caseeafhse- ature’is initialized to a value of 0.

based models, it may happen that the model executablghe consequences are as follows:

is called successfully but the names of the files for log

info and diagnostic messages are not properly passe@ When using one offops’s methods together with
via the command line. Consequently, the model ter- @ true optimization algorithm, it may be neces-
minates without creating any log or error output. The sary to set box-constraints for critical parameters.

non-zero return level is the only sign of failure then. Similarly, when doing Monte-Carlo simulations
with the nodel Err or _MCS method, the sam-

pling ranges must be chosen with care in order
not to produce invalid (e. g. unphysical) parameter
The model does not run at all combinations.

2.8.2 Specific recommendations

e Check the path to the executable if a relative or ® The initial values for the state variables must be
absolute path was specified. chosen so as to be compatible with any parameter

sets possibly tested during optimization or Monte-
o If the executable is called just by its name butthe  Carlo simulation, respectively.

file does not reside in R’s working directory, you
might need to check/adjust your 'PATH’ environ- Disregard of this often causes a model to crash due

ment variable. to floating point exceptions. In other cases, the model
only produces implausible outputs (which are hopefully
e Check for broken links (if a link is used). detected because of a bad fit).

e Check whether the file is actually executable.

The command line is not passed to the model

e Try to call the executable directly, i. e. not via an
intermediate shell script and not using a link. This
is best done by adding the directory containing the
executable to the 'PATH’ variable.

o If this does not help, replace the executable by a
shell script that reports its full command line but
does nothing else. Try to learn from this.

The model crashes due to floating point exceptions

In true optimization as well as in Monte-Carlo simula-
tion, the simulation model is run with many different
parameter sets. In general, the tested parameter sets are
chosen by the used algorithm, based on sophisticated
rules or simply by random sampling. Thus, the particu-
lar sets are not know a-priori.

In many models, the values of different parameters
are not totally independent. For example, if a fictive pa-
rameter 'maximumCapacity’ has a value of 5, it does
not make sense if a companion parameter 'minimum-
Capacity’ has a value greater than 5. Similarly, some



Chapter 3

Filling of gaps in meteorological time

series (reteof 1 | | )

3.1 Purpose

For hydrological modeling, time series of meteorologi-
cal variables are required. Besides rainfall, this usually
includes variables like temperature, radiation, humjdity
windspeed, and possibly air pressure. The time series
of meteorological observations often containg some (or
many) missing values due to failure of sensors, power
blackout, errors in transmission and recording of data
and various other causes.

Internally, all hydrological models require continu-
ous (i. e. gap-free) time series of the meteorological
forcing variables. This requirement can be fulfilled in
two different ways. In the first strategy (Fig.1, left)
the model reads the incomplete series and must fill the
gaps internally. The second strategy (F3gl, right)
uses an external pre-processor to complete the informa-
tion before calling the model.

The second approach has a number of advantages
listed below:

e Models are often run many times using the same
input data set (for example in calibration or uncer-
tainty analysis). It would be a massive waste of

e Separating the time series pre-processor from the
actual model makes the software more modular
which is advantageous in terms of re-use and
maintenance.

met eof i | | is designed for the second approach

(Fig. 3.1, right). It is a pre-processor to produce gap-
free time series from observation data.

33

A\
I

Pre-
processor

without

I N
computer time to repeatedly pre-process the tinkégure 3.1: Alternative strategies to handle gaps a model’s
series input in every single run. input time series.
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The methodology used hyet eof i | | is built on a Locations
space-for-time trade approach (see Se®). It requires 1 2 3 4 5
that observation data are available foultiple stations
Usingnet eof i | | to fill gaps in a time series of ob- S %g%gé;
servations at a single location is technically possible but 2
it is likely to give poor result (see details in S&c2.1). § CEEXEs §
Note that, forspatially distributedmodels, there are % >< ><>< >< D 4 9
now two separate steps of spatial interpolatioim the §_ T s .qg’
first step,met eof i | | is uses spatial interpolation to S H DXDD 6 =
remove any gaps in the model’s multi-location input =~ ><><><><>< -
time series. In the second step, typically called region-
alization, the pre-processed multi-location data are then \J D D D s
interpolated to the spatially distributed model objects. — —
This second interpolation step is typically fully in- Spatial dimension
depentljent Oﬁﬁt e.of III I. and ma?/ be carried OUt'. fo.rFiPure 3.3: Example of a multi-location times series of a
example, by the simulation model, or any geoStat's“Cr"?!ieteorological variable with valid (squares) and missiatad
software. values (crosses).
It is also possible, however, to uset eofi |l | to
combine the two steps of spatial interpolation men-
tioned above. This is illustrated in Fig.2 missing data value (cross) by a reasonable estimate, one
In the left branch of Fig3.2 net eof i | | isusedto could, in theory:

fill the gaps in time series of actual observations made
at real-world stations. The distributed model reads thel. interpolate in time. For example, the missing value
pre-processed time series and performs the regionaliza- at location 3 in time step 4 could be substituted by
tion to the model objects internally. In this approach, interpolating between the values at the same loca-
the model reads a rather small amount of data from files  tion in time steps 3 and 5.

which is efficient with respect to computation time and
disk space. User's odchse-based models propably
always want to use this approach.

The alternative is shown in the right branch of
Fig. 3.2 wherenet eof i | | is used as an all-in-one
interpolation tool. This is practically achieved by con-
sidering the locations of the model objects as 'normal’
observation siteshat never recorded any dataThis
kind of usage may be problematic for models with many,
spatially distributed objects, in particular if longer gm
series are processed. The produced files may become
extremely large, which may result in a massive slow-
down of model performance and disk operations in gen-

2. assume persistence. For example, the missing
value at location 3 in time step 4 could simply
be substituted by the value from the previous time
step (step 3, same location). This is actually a spe-
cial case of interpolation in time, where the previ-
ous and next value are weighted with factors of 1
and 0, respectively.

interpolate in space. For example, the missing val-
ues at locations 2 and 4 in time step 2 could be es-
timated by spatially interpolating the values from
the remaining locations 1, 2, and 5 observed at the
same time step.

eral. Thus, the use ofet eof i | | as an all-in-one in-
terpolation tool is recommended in special cases only, ombine the ideas of spatial and temporal interpo-
(small models, few time steps; see example in Big). lation.
The current version ofret eof i | | primarily re-

3.2 Methods lies onspatialinterpolation, rather than interpolation in

time. This can be summarizes by the following simple
3.2.1 Filling of gaps rules:
The approach taken hyet eof i | | is best explained e If, in a time step, a value is available at> 1

with an example (Fig3.3). In order to substitute a location(s), missing data at the otherlocations
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Local time series with gaps
S o
o ©
S <)
METEOFILL METEOFILL
Local time series, filled Regionalized data
= o
o @
o o
Model reads local time series and Model reads already
performs regionalization internally regionalized data
(may use pre-computed weights)
Objects of distributed model Objects of distributed model
Figure 3.2: Possible strategies of preparing the time series inputpdtigdly distributed model usinget eof i | | . Whenever

possible, the left branch should be preffered for perfomearasons.

are estimated by spatial interpolation (see Setaken into account by adjustment of the exponeit

tions 3.2.2and3.2.3for details). In the simplestEqgn.3.1
case withn = 1, the single observation is assumed
to be valid globally.
Y =
e If, in a time step, no data are available at any lo-
cation, persistence is assumed. Thus, for each lowith

cation, the value (or estimajefrom the previous Yk
time step is used (see Se&t6.1for practical ad- Vi
vices). d(i, k)

Dimy (i - d(i k)7P)

3.1
S G-

(d(i, k)=P)

Value at the target location (indé.
Value at source location with index
Distance between locations with in-

After filling the gaps at all station in a time step
the computation proceeds with time stgp- 1. This

dicesi andk.
Parameter (typically set to 2).

algorithm obviously requires that, in the very first time For a particular target location (indéxn Eqn.3.1),
step, there is at least one location with a non-missitite set of appropriate source locations (indices

value.

3.2.2 Inverse-distance approach

The inverse-distance method (Edhl) is used to per-

throughn in Eqn.3.1) is found by a sector search. Thus,
the surrounding area of the locatiégnis dub-divided
into a number of sectors and only the nearest source lo-
cation is picked from each sector. This is illustrated in
Fig.3.4.

Given a fixed number of sectors, the selection of

form the spatial interpolation. It is a robust and compthe source location obviously depends on the orien-
tationally cheap method. To a limited extent, the sptation of the sectors. To achieve an optimum result,
tial autocorrelation of the interpolated variable can lreet eof i | | allows for testing different orientations by

1|f data are missing for a number of subsequent time steps

rotating the sectors (Fi®.5). From the tested orienta-

tions, met eof i I | uses the one where the cumulated
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i 2 \ e Only asinglepredictor variable is supported.
1 I
@) i O ¢ A linear relation between the predictor and the in-
! terpolated variable is assumed.
gz |
""""""" @""""3""' e Theadditiveapproach is used (not the alternative,

: @) multiplicative approach).
i
1

The basic algorithm of additive, uni-variate inverse-

. _ o distance residual interpolation is summarized in
Figure 3.4: Example of a sector search in spatial lnterpolﬁ ’gn s3.2t03.4

tion. From each of the four sectors, only the nearest statio
(1,2,3) is used in estimating the variable at the targettiosa
T). Values at the crossed locations are neglected. N
@ 9 S (Ry - di, k)P

yr =Bk + o —— (3.2)
! > i (d(i, k)~P)
i O N © o
o ° o O Q. © Ej=a-zj+b (3.3)
_________ -C?—-’*---"-- /_,/"(D'\\ //Cr)\"\\' R,L =Y; — E‘z (34)

with the additional symbols (cf. Eq8.1)
Figure 3.5: Example of sector rotation. This example used a E; Estimate of variabley at an arbitrary
number of four sectors with 3 different orientations. location;j obtained from a linear model
with the external predictor variable
and empirical coefficients andb.

distance between the target and the source locations is . . o
Residual at a source location with in-

minimal. ' dexi
The selection of the appropriate source locations is h if)_(lf f the li del
the computationally most demanding step. This is es—T e coefficients of the linear model (Eq8.3) are

pecially so if both the number of target and source |ypdated in every single time step. Th's is done using
cations is large. Thereforept eof i | | carries out a the data from all source locations (i. e. all locations

search for the source locations only with Val_'d data). ) ) )
The linear correlation between the interpolated vari-

e at the very beginning of the computation (first timable y and the additional predictor variabtemay be

step). more or less strong. In particular, the sign and quality
. _ _ o of the correlation may be variable in time. Therefore,
o if the set of locations with missing data haget eofi || accepts a user-specified quality threshold,

changed from the previous to the current time ste@presenting a minimunk?. If the value of R? for
the linear model (Eqr3.3) is equal or greater than the
user-specified threshold, residual interpolation is used
(Egns.3.2to 3.4). Otherwise, in the case of a weak
The result of spatial interpolation can often be improvexrrelation, the plain inverse-distance method is applied
by using additional predictor variable(s). Values dEqn.3.1). The same is true if the number of data pairs
these valiable(s) must be known at all source and tépr estimation of the linear model is lower than a user
get locations. For example, elevation my be a usefpecified minimum sample size.
additional predictor when interpolating air pressure or Residual interpolation iseverused if the threshold
temperature data. Two prominent approaches to spatoal R? is set to a value > 1 or if the minimum sample
interpolation with additional predictors are (1) externaize is set to a value greater than the total number of
drift Kriging and (2) residual interpolation. locations.

met eof i | | supports the latter approach with the In some cases, use of the linear model may result in
following settings/restrictions: undesired extrapolation effects. This is especially so, if

3.2.3 Residual interpolation
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e the range of possible values of the interpolated reading input files. The columns of output files are
variable is limited. Example: Precipitation inten-  separated by the first (or only) character in the set.
sity cannot be negative. Typically, a TAB character (enclosed by quotes) is

. . used as in the above example.
¢ the value of the predictor variableat a target lo-

cation is outside the range elalues at the sourcechars_comment (characte) Initial character of

locations. Example: Data are missing for a loca-  comment lines in input files (typically the hash
tion at sea level and all available data correspond  character). Should be quoted.

to elevations of 500-5000 meters.
odat a (numerig Value to indicate a missing value

In order to suppress such undesired resulps, : . ; . : .
. . in the input time series. Typically, large negative
nmet eof i | | allows for data truncation. The result val- .
. . . . values like -99 or -9999 are used for the common
ues of residual interpolation are truncated if they are . .
meteorological variables.

outside a user-specified range.

An example, illustrating the effect of residual inter;
polation in comparison with plain inverse-distance in-
terpolation is shown in FigB.6.

dw_power (numerig Value of parameterp in
Egn.3.1 Typically a value of 1 or 2. The opti-
mum value may be determined by cross-validation
or variogram analysis.

3.3 Arguments and invocation of nsect ors (intege) Number of sectors to be used in

nmet eof i | | the search of source locations (see Big). Using
nsect or s=1 forces a nearest-neighbor interpo-
nmet eof i | | is an application written in C++. It ex- lation. You probably want to use a value between

pects all input to be supplied as command line argu- 3 and 8 (or 1).

ments. All arguments must be supplied in a keyword-

values style as in the following example call: nori gi ns (intege) The number of sector origins
(sector rotations) to be tested. See Sge.2

meteofill ifilelocations="|ocations.txt (Fig. 3.5). You probably want to use a value be-
ifile_data="data withGaps.txt .
chars_col sep=" " chars_comment =" #" tween 1 and 5. Larger values should give better
Aol a=— 95 dl power=§ results at the expense of an increase in computa-
nsect ors=4 nori gi ns=3 tion time.
resi d_nm n=3 resid_r2m n=0. 36 ) ) . o
resid I1ine-40. resid uline40. resi d_nm n (intege) Minimum number of loca-
ofile data="data_filled.txt" tions with valid data (source locations) for pos-
ofile_locations="locations.txt" sibly activation of residual interpolation. If the
ndi gits_max=1 logfile="1o0g.txt" actual number of source locations is less than
overwite=true resi d_nm n, residual interpolation isot used.

Otherwise, the decision depends on the quality of
The meaning of the various keywords is as follows: the linear correlation (seeesi d_r 2ni n). Rea-

sonable values faresi d_nmi n are probably>

ifile_locations (string) Input file listing the 3
spatial coordinates for all locations. See Sd.1
for details. resid_r2mi n (numerig Minimum R? of the lin-

ear model used in residual interpolation (see
Sec.3.2.3. For actual activation of residual in-
terpolation, the computedk? for the particular

i fil e_data (string) Input file with multi-location
time series data. See S&c4.2for details.

char s_col sep (character(s) One or more charac- time step must bgye resid_r2m n and, in
ter(s) used as a column-separator. Should be addition the sample size must be large enough
quoted, if a special character like TAB (ASCII (seeresid _nmn). Reasonable values for

code 9) is used. Any of the characters (if more resi d_r2m n are probably> 0.36 (correlation
than one) is treated as a column separator when coefficient of 0.6).
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Figure 3.6: Effect of residual interpolation on the regionalizationaif temperature in a mountainous watershed. In this
example, the air temperature observed at climate statdmghly correlated to elevation. The stations (not showe)@cated
outside the watershed in the North (low elevation, warm) Sodth-East (high elevation, cold). Left: Elevation modebf
high, green: low) and river net (white). Centeret eof i | | output using the plain inverse-distance approach (blutd, co
red: warm). Rightrret eof i | | output using residual interpolation with elevation as &ddal predictor. Obviously, higher
temperatures are predicted in the valleys by taking theécagtemperature gradient into account.

resid_| i m(numerig Lower truncation limit in an error, a non-zero code is returned and traceback info
case of residual interpolation (see S&2.3. For is sentto standard output.
variables that cannot take negative values (like pre-
cipitation or short-wave radiatiom)esi d_I i m
should be set to zero. 3.4 Input

resi d_ulim(numerig Upper truncation limit in 3 41 |Locations table
case of residual interpolation (see Sée.3.
The locations table is a text file with four columns (see

ofi | e_data (string) Name/path of the output file sec.3.3for how to select a column separator). The ex-
containing the time series with all gaps filled a@ected column names arrel, x, y, andz. Thei d col-
cording to the method described in S8 umn contains the names of locations (usually climate

ofile_locations (string) Name/path of the out- stations or rain gag(_es), for which data are gvailablt_e. The
put file containing a list of the locations fromIDS_ are read as strings. T_he corresponding spanal co-
i file |ocations for which data are actuallyordmates go in the and_y fields. Fpr the cgordlnates
presentini fil e_dat a. one sl_would use g(_aodetlcsystem_(l. e. units of me-

ters, kilometers, miles, etc.). Thefield should contain

| ogfil e (string) Name/path of an output log file.  the values of the external predictor variable for residual

interpolation. Elevation is the natural choice if noth-

ing better is available. If residual interpolation should

not be used anyway, the column may be filled with

ndi gi t s_max (integef) Number of digits to be used
in the output fileof i | e_dat a.

overw ite (logical) A value of either true of false. dUmmy values. _ o
If true, any existing output files will silently be re- An example of a locations table is given in F&7.
placed. It is OK if the locations table contains more than

the mandatory columngret eof i I | simply ignores
After successful execution, the return code dlfie unnecessary information. It is also OK if the loca-
met eof i | | is zero. If the program terminates due ttions table contains records for additional locations not
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id X y z 3.5 Output
kl ot zsche 4623183 5667440 227
hosterwi tz 4629789 5655359 114 The current version ofret eof i I | generates three
strehl en 4623996 5652991 119 output files whose names are specified at the command
di pps_rein 4620226 5644000 365 line (see Se.3). The contents of the files is described
zi nnwal d 4623539 5622933 877 in Table3.1
Figure 3.7: Example of a locations table. 3.6 Hints for practica| usage

3.6.1 Missing-only data (options beyond
time MI. CMP. ARl ES MTI. ORO ;
2000-01-01 0 -99 0 perS|stence)
2000- 01- 02 4 -99 1 As pointed outin Se@.2.1, met eof i | | assumes per-
2000-01-03 12 3 1 sistence if, in a particular time step, no data are available
2000-01-04 -99 -99 -99 for any station (let’s call this situationgdobal gap. Al-
2000- 01- 05 0 -99 0

Figure 3.8: Example of multi-location time series file for us

with met eof i | | .

present in the time series input file (S8c4.2. These

records are silently ignored as well.

3.4.2 Time series file

though persistence is a simple and intuitive approach, it
is likely to give satisfactory results only as long as the

‘{Jeriod of missing-only data is short enough. For long-

asting global gaps, persistence may not be a suitable
assumption and it may be desireable to fill the gap with
predefined values. Possible candidates are monthly av-
erage values or, in the case of rainfall data, a fixed value
of zero.

Furtunately, there is a simple trick to let
met eof i | | fill such global gaps with predefined
values. All you need to do is to supplement the input
data with asyntheticstation that 'recorded’ the desired
fill-in values (which may vary in time). The spatial
coordinates of that synthetic station must be chosen
so that it isvery far away from all the actual stations

The time series input file is a text file with+ 1 columns (€. g. some million kilometers). Hereby it is ensured
wheren is the number of locations (see S8@for how that the data from the synthetic station will practically
to select a column separator). The table must hav®eignored (i. e. weighted with almost zero), as long as
header line with column names. The first column of tHy of the actual stations provides valid data.

file is expected to contain time information in ascend-

ing order (oldest record first). Any format can be used

asnet eof i | | internally treats the data as strings, not

as times. For this first column, an arbitrary name can

be chosen (but it must be present). The remaining

columns contain the numeric observation data atithe

locations. These columns may be in any order but their

names need to match exactly with the location IDs pro-

vided in the locations table (Se8.4.1). Any missing
or invalid data values must be indicated by tladlat a
value (see Se@.3). An example of multi-location time

series file is given in Fig3.8.

For the algorithm to be successful, it is important that
the very first (oldest) record contains valid data for one

location, at least.
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Table 3.1: Output files ofiret eof i | | . The entries in the 'File’ column refer to the command lingtanents describe in
Sec.3.3

File Contents

ofile_data

ofile_l ocations

logfile

A multi-location time series table. Format and contents@eatical to the input time
series Sec3.4.2except that alhodat a values are replaced by estimates according
to Sec.3.2

Similar to the input locations table described in S2d.1 The table contains only the
mandatory columns and list only those stations for whictetsaries data are actually
present.

Lists, for each time step, the number of locations with vehdh (as absolute number
in columnnundat a and as a percentage in colurawnai | abi | i ty. The column
confi g_changed contains information on whether the set of locations witksni
ing data has changed in comparison to the previous time #gpifing a new search
for neighbored locations). The columnesi dual _i nt er p andr 2 contain infor-
mation on the use of residual interpolation (true/false) tre corresponding? of
the linear model.




Chapter 4

River cross-section analysis
(xsAnal yzer)

41 Purpose Left . Main channel , Right

flood plain | 1 flood plain

ThexsAnal yzer software computes basic hydraulic
properties of a river reach being described by

1. arepresentative cross-section geometry, Figure 4.1: A typical river cross-section.

2. the hydraulic roughness (energy loss parameter),

3. the bed slope, shows a typical example with a distinction between the
main channel and the flood plains on either side of the
4. the reach length. river.

The computed results refer to a situation of steady | N€ Cross-sections’s geometry can be represented as

uniform flow. This means that (1) the flow rate is corft WO column table. One column specifies the offset

stant in time, (2) the cross-section geometry does AEM @ fixed point (typically at the left bank) and the

change along the reach, and (3) the slope of the wadther column holds the corresponding elevations. From

surface is identical to the bed slope (no backwater). SUch & table, the functiond(D) and k(D) can in-

ThexsAnal yzer tool can be used, for example, tSt@ntly be computed, wher® is the maximum flow
depth in the cross-section is cross-sections the wet

e calculate an approximate rating curves for umrea, and? is the hydraulic radius (wet area divided by
gaged sites at a river, the wet perimeter).

e estimate parameters to describe a reach’s reten .oHsing Manning’s equation (Eq.1), the flow rate
par . . tfor steady uniform condition§ can be calculated for
characteristics for use by hydrologic flood routin

methods ggiven flow depthD if the slopeS and the rou_ghnt_ass

' parameter. are known. The reverse computation aimed
Note that the R-packageopocat ch (see Chapl) at finding the value oD for a given@) is also possible

contains methods to perform similar tasks. Howevdnt requires a numerical solution.

as opposed tesAnal yzer these methods are not ca-

pable of handling compound cross-sections, i. e. those 1 23
with a variable roughness (see Sé@). QD)= —- VS-A(D) - R(D) (4.1)

For many real-world cross-sections, the use of a sin-
4.2 Methods gle, unique roughness parameteis not appropriate.

This is often the case for cross-sections with flood
The most important input information ofplains (Fig.4.1) because the actual surface roughness
xsAnal yzer is the cross-section geometry. Fg§l is horizontally variable. For example, the flood plains

41
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Flow velocity sl ope=0. 000485
Low Fligh Lo pl ai n_I engt h=1000.
max_nreserv_kal m |1 =100
>- € print_only_routing=fal se

The meaning of the various keywords is as follows:

Figure 4.2: Turbulence due to shear at the interface of floyj | e _xsect i on (string) Input file with cross-
zones. section geometry data. See Séel.1for details.

file_flows (string) Input file listing flow rates of
may be covered by vegetation while the bed of the main interest. See Sed.4.2for details.
channel is made of sand or concrete. Then, enetgy

M e_out (string) File name/path for output.
losses due to turbulence will be quite different in the —— ( 9 P P

channel and the flood plains. read_3d (logical) Must be FALSE if the geometry
To handle this situatiorxs Anal yzer uses the idea data are given as a table of corresponding offsets
of compound cross-sections (s€einge et al. 1980. and elevations. Must berUE if the geometry data

Thus, the cross-section is horizontally sub-divided into  are available as 3-dimensional coordinates.
separate zones. To each zone, a unique value isf
applied when using Eq.1 In the case shown in
Fig. 4.1, for example, the flow rate would be computed
in two steps. First, the individual flow rates of the main
channel and the two flood plains would be calculated,
before the three values are added up in a second step.

It is important to keep in mind that this approach al-
lows for different flow velocities in the zones. In real-
ity, this would lead to additional turbulence and, consdef aul t _r oughness (numerig The unique value
quently, result in additional energy losses due to shear of the roughness parameter to be used if no val-
at the zones' interface (Fig.2). Such losses, however,  ues are specified in the geometry file. Note that
are difficult to estimate and they agally neglectedy the roughness must be specified as Strickl&rs
xsAnal yzer. parameter which is the inverse of Manningis

If xsAnal yzer detects a water surface elevation (Kst =1/n).
which is higher than the cross-section’s elevation at tg?
first and/or last offset, it assumes a vertical wall at the
respective offset. The output file (Seth) contains a
field to detect those critical situations.

read_r oughness (logical) Must beTRUE if the ta-

ble with geometry data contains an additional col-
umn with roughness values. Note that the rough-
ness must be specified as StrickleKst param-
eter which is the inverse of Manning’s (K st =
1/n). If FALSE, a unique roughness value is as-
sumed (see next argument).

ope (numerig Slope of the river bed as a dimen-
sionless number (i. e. meters elevation per meters
distance).

pl ai n_| engt h (numerig Length of the reach as a
. . horizontal distance. For typical values of the slope,
4.3 Arguments and invocation of this is almost identical to the actual length of the

xsAnal yzer reach.
_ o _ _ max_nreserv_kal m | (intege) A parameter to
xsAnal yzer is an application written in C++. Itex-  control the output. It specifies the maximum num-

pects all input to be supplied as command line argu- per of conceptual linear reservoirs for the Kalinin-
ments. All arguments must be supplied in a keyword-  Miljukov routing method.

values style as in the following example call: . . ) .
print_only_routing (logical) A switch to op-

xsAnal yzer file_xsection="geonetry.txt" tionally reduce the amount of output information.

file_flows="flowsCf I nterest.txt" .
file_out="output.txt" After successful execution, the return code of

read_3d=fal se xsAnal yzer is zero. If the program terminates due
read_r oughness=f al se to an error, a non-zero code is returned and traceback
def aul t _r oughness=30 info is sent to standard output.
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of f set z X y z

-100 20 - 100 0 20
0 20 0 0 20
5 15 5 0 15
25 15 25 0 15
30 20 30 0 20
100 20 100 0 20

Figure 4.3: Example of geometry file in 2D format withoutFigure 4.5: Example of geometry file in 3D format without

roughness information. roughness information.

of f set z Kst " . , Kst

-100 20 20

0 20 30 -100 0 20 20

5 15 30 0 0 20 30

5 15 30 5 0 15 30

30 20 20 25 0 15 30

100 20 20 - o2y 20
100 0 20 20

Figure 4.4: Example of geometry file in 2D format with spec-
9 p g y P Figure 4.6: Example of geometry file in 3D format with spec-

ifi h .
ified roughness ified roughness.
4.4 |Input
list of flow values with arbitrary increments but the data
4.4.1 Geometry data must be in increasing order.

The file holding the geometry data must be in tabular
format with columns separated by the TAB character
(ASCII character code 9). Lines with an initiglchar- 4.3 Units
acter are treated as comment lines. A header line with

column names is mandatory. See the examples below hat th it of all i d dtob .
for the expected column names. Note that the units of all input data need to be consis-

Figs. 4.3 — 4.6 illustrate the four different possibletent. If, for example, the offsets are given in meters, the

file formats for geometry data. If the data are given | jevation data_ must be provided in un|t§ of ”?eter.s too.
the same time, flow rates must be given in units of

2-dimensional format, the offsets must be in increasi

order. per second.
Note that, of roughness information is present, the

value for a particuar offset applies to the part of the

cross-section between this offset and the followi 0. 1

offset. Thus, the roughness information of the ve 1

last record is effectively ignored (but a value must é

present). e
50
4.4.2 Flow values of interest 100

The flow data are read from a plain text file like the one o _
in Fig. 4.7. This is effectively a single-column table. AFigure 4.7: Example of file with flow data for use with
header must not be present. The user is free to specif{gdnal yzer .
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# Cross-section property table

# X-section data file: in/montalban/geometry_constRough xt

# Flow data file: in/montalban/flowsOfInterest.txt

# Used reach length: 1000

# Used slope: 0.000485

# Used roughness: 30 (Global default)

flow stage overtop wet_area top_wi dth wet_perineter volune_total dvdg_total nsub vol ume_sub dvdg_sub
0.5 19.74 0 1.71 5.6 5.79 1707. 2 2231.8 3 569. 1 743.9
1 19.92 0 2.82 6. 94 7.19 2823.1 2111. 8 2 1411. 6 1055. 9
2 20.16 0 4.69 8.74 9.07 4694. 9 1915.7 1 4694. 9 1915.7
5 20.64 0 10. 84 18.02 18. 57 10836. 9 1932. 4 1 10836. 9 1932. 4
10 21.02 0 19.54 27.94 28. 67 19541. 2 1553. 4 1 19541. 2 1553. 4
20 21.41 0 31. 33 32.13 32.98 31326. 8 1175.3 1 31326. 8 1175.3
30 21.75 0 43. 05 38. 84 39.73 43046. 2 1310.8 1 43046. 2 1310.8
50 22.33 0 74.82 72. 4 73.55 74819.0 1302. 6 1 74819.0 1302. 6
75 22.64 0 98. 45 78.1 79.51 98446. 4 849. 8 1 98446. 4 849. 8
100 22.88 0 117. 31 78. 32 80. 04 117309. 9 727.7 1 117309.9 727.7

Figure 4.8: Example of an output file produced kg Anal yzer .
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4.5 Output

The current version ofsAnal yzer generates asingle

output file containing a summary of the properties of the

cross-section / reach. An example is shown in Bi§.
The meaning of the columns is as follows:

f | ow Flow rates of interest as specified in the input
file.

st age Water surface elevations corresponding to the
flow rates of interest.

overtop Either 0 or 1. A value of 1 means that the
water surface elevation is higher than the cross-
sections elevation at the first and/or last offset. In
that case, a vertical wall was assumed as a bound-
ary.

wet _ar ea Wet cross-section area.

t op_wi dt h Cross-section top width.

wet perineter Wetted perimeter.

vol une_t ot al Total storage volume of the reach.

dvdqg_t ot al Estimated derivative of the storage vol-
ume with respect to the flow rate.

nsub Suggested number of linear reservoirs (= length
of cascade) for Kalinin-Miljukov routing.

vol ume_sub Storage volume in the individual reser-
voirs for Kalinin-Miljukov routing.

dvdg_sub Estimated derivative of the storage vol-
ume with respect to the flow rate for the individual
reservoirs for Kalinin-Miljukov routing.
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Chapter 5

Time series visualization tool { spl ot )

5.1 Purpose Each line of the file (row in the table) defines a time
series to be plotted.

t spl ot is a lightweight tool for the interactive visual- The instructions file must contain a table header with

ization of time series data. It offers a convenient way to complete set of column names (in any order). The

quickly inspect the output of aechse-based simula- meaning of the columns is as follows:

tion model. It is particularly useful for showing simu-

lated and observed data in a single plot for the puer§e , k ) X

of comparison (see Fi§.1). Note that spl ot is opti- ries data in the format described in S&ci. Ab-

mized for interactive plotting only. If you need to create ~ SOlUte or relative paths can be used. On Windows

plots for presentation in a paper, for example, you better SYStems, it is important that the forward slash (
use R commands or another software. is used to separate the names of directories, instead

of the usual backslash J.

| e (string) Name of a text file containing time se-

. col name (string) Name of a column existing in the
5.2 Required software data file specified ifii | e. The values in this col-
umn are taken as the y-values. If the data file has
t spl ot is implemented as an R script. Thus, to use no header, i. e. no column names, one has to sup-
it, a current version of R must be installed. 3éeeis ply the index of the column rather than a name.
(2012 for information on how to install R. In order to The smallest useful index is 2 (see Sed).

invoket spl ot via a bash shell script under Windows, . o )
MSYS is required (sekneis 20125. col or (string) Name of an existing color in R (ex-
amples: red or lightblug). Call the function

colors() from an R prompt to display a

5.3 Instructions files (lengthy) list of all pre-defined color names.

t ype (string) This defines the style used for plotting.

The source(s) of the data to be plotted witepl ot Using 'p’ (for points) and 'I' (for lines) is appropri-
and the corresponding styles are defined in instructions ate for instantaneous data. For regular time series,
files. For every individual plot, one needs to create such where the values represent averages (or sums) over
a file. At a first glance, this may seem inconvenient. a intervals of time, you should 'S’ or ’s’, depend-
However, putting the instructions into a file allows for  ing on whether the given times specify the begin
re-drawing a particular plot with only a single mouse  (’s’) or the end ('S’) of an interval. The output
click. In modeling studies — and in particular during  time series produced lBchse models use the lat-
model calibration, when the data change frequently — ter convention, thus you should use 'S’. Note that
this is of great advantage. using 'p’ may slow down the creation of plots sig-

Instruction files are plain text files containing data in  nificantly if the time series contain many values.
a tabular format. The columns must be separated by In such cases, use one of the other options as an
white spaces (one or more spaces of tab characters). alternative.
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Figure 5.1: Screen shot of aspl ot application.

nane (string) A name for the series to appear in the Anexample of an instructions file is given in Fig2
legend. If you need to put comment lines in the instructions file,
use a semicolon as the first character of the line. The

header (logical) Must be a logical value (TRUE orjj,q wiji then be ignored by spl ot (see example in
FALSE in uppercase letters). If TRUEspI ot Fig.5.2).

expects the data file to contain a header with col-
umn names.

5.4 Expected format of data files

conment (string) A single character to be treated as

ahcohmmhenrt] character in thgfdatz:]fne. Quite Oftep e actual time series data must be stored in plain text
the hash characte#]is used for this purpose. o5 These file(s) must be formatted as follows:

nodat a (string) The value used in the data file to in- A tapular format is expected with columns sepa-
dicate missing values. Typical examples include | iaq by the tab character (ASCII code 9).
'NA' or ’-9999'. The corresponding rows of the
data file are ignored when creating the plot. e Time information must be in thi&rst column of the

file.
fact or (numerig A factor to be applied to the data

before plotting. A value other that 1 may be use- ¢ Times must be encoded as stings in ISO 8601

ful to re-scale data when plotting multiple series  format (YYYY-MM-DD hh:mm:ss) with date and

whose values are of different magnitude. time separated by a single blank. Alternatively,

_ ) one can provide only the date using the format

xcut (IOQ'C?II) Must be a logical value (TRUE or YYYY-MM-DD. If only the date is given, a time

FALSE in uppercase letters). If TRUE, the X-axis 4t 00:00:00 is implicitly assumed.

is truncated to the range of times contained in the

data file. When plotting multiple series, a value of e The times in column 1 may be given in regutar

TRUE should not appear in more than 1 row of the  irregular intervals. They should be in increasing

instructions file. order.
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file col nane color type nane header coment nodata factor xcut
Exanple with two series

obs.txt Q cyan S Gbserved TRUE # NA 1 FALSE
simtxt gqx_avg blue S Mbdel TRUE # NA 1 TRUE

Figure 5.2: Example of & spl ot instructions file to display two time series of observed antitated values.

date_and_ti me_UTC statl stat2 Using the command line

1996-07- 26 00: 00: 00 0.8 1 . . . . .
1996- 07- 26 01: 00: 00 11. 5 14 Assuming that an instructions fitey pl ot . t xt exists
1996- 07- 26 02: 00: 00 10.1 13 in your home directory, a call from the command line
1996- 07-26 03: 00: 00 3.2 3 might look as follows:

1996- 07-26 04:00: 00 5.5 3

1996- 07- 26 05: 00: 00 47 5 ./ tsplot.sh /hone/ mynane/ nmypl ot . t xt I
1996-07- 26 06: 00: 00 4.2 4

1996- 07- 26 07: 00: 00 3.5 4 To use this, however, one first needs to navigate to the
1996- 07- 26 08: 00: 00 7.8 10 directory oft spl ot , where the spl ot . sh resides.
1996- 07- 26 09: 00: 00 2.8 3 This is rather inconvenient. To be able to dadlpl ot
1996- 07-26 10: 00: 00 3 3 from anydirectory, you could do one of the following:
1996-07-26 11: 00: 00 7.3 9

1996-07-26 12: 00: 00 0 0 e Move all files related td spl ot to a directory
1996- 07-26 13: 00: 00 0 0 listed in the 'PATH’ environment variable.

o Alternatively, add the path of the directory with the
Figure 5.3: Example of a time series file for use with t spl ot sources to thdATH environment vari-

tsplot. able. Se&neis (20120 for details.

e Alternatively, put a script in one of the directo-

e The file can optionally have a header line specify-  "€s already contained in theATH variable and
ing column names. Such names should be valid €t this script calit spl ot . sh. In that case, you
names in R, i. e. the first character must be a let- N€ed to make sure that command line arguments
ter. More letters, digits, and/or underscores may &€ passed on.
follow.
Using the file browser’s context menu

An example of a properly formatted time series filtly Ubuntu, Nautilus Actions provide the most conve-
is shown in Fig5.3. nient way to process an instructions file witepl ot .
After defining a new action, you can simply process an
instructions file from the Nautilus file browser’s con-
text menu. Thus, only two clicks with the right and left
55 Invoking ts p| ot mouse buttons are necessary. See the documentation of
Nautilus Actions for more info.

5.5.1 On Linux 5.5.2 On Windows

On Linux, one needs to execute the shell scritn Windows, one needs to execute the batch file
t spl ot . sh and supply the name of the instructionsspl ot . bat and supply the name of the instructions
file as a command line argument. file as a command line argument.
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Assuming that an instructions file
c:\temp\ mypl ot.txt exists, a call from the
command line might look as follows:

tsplot.bat c:\tenp\nyplot.txt I

To use this, however, one first needs to navigate to
the directory ott spl ot , where the spl ot . bat re-
sides. To be able to cdllspl ot from anydirectory,
you could do one of the following:

e Move all files related td spl ot to a directory
listed in thepat h environment variable.

¢ Alternatively, add the path of the directory with the
t spl ot sources to thgpat h environment vari-
able. Sed&neis(2012H for details.

Using the file browser’s context menu
There are basically two ways:

e Invent a new file extension for your instruction
files (example: '.iii’). Create a new custom file
type with that extension. Then configure the
default 'open’ action for the file type so that
t spl ot . bat is called with the file name as an
argument. Thus, the 'open’ action should read like
sonme- path\tspl ot. bat "%d".

e Alternatively, one can modify the 'open’ action of
any file type by editing the Windows registry. This
is recommended for experienced users only and
will not be described here.
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