
Eco-Hydrological Simulation Environment
(echse)

Documentation of Pre- & Post-Processors

Author David Kneis

Affiliation Institute of Earth and Environmental Sciences

Hydrology & Climatology Section,

University of Potsdam, Germany

Contact david.kneis [at] uni-potsdam.de

Project PROGRESS

Sub-project D2.2

Funding German Ministry of Education and Research (BMBF)

Last update March 7, 2014

Please help to improve this document by sending suggestions, corrections, wishes, and other useful feedback to
the author (see above).

Contents

1 Catchment modeling utilities (R-packagetopocatch) 7
1.1 Purpose. 7
1.2 Installation . 8
1.3 Standard documentation. 8
1.4 Supported data file formats. 8

1.4.1 Overview . 8
1.4.2 ASCII grid format . 8
1.4.3 Shape file format. 9

1.5 Typical usage. 9
1.5.1 Step 1: Filling of the elevation model (dem.fill) . 9
1.5.2 Step 2: Analysis of the filled elevation model (dem.analyze) 9
1.5.3 Step 3: Identification of model objects (hydroModelData) 10
1.5.4 Step 4: Calculation of additional sub-basin attributes . 12
1.5.5 Step 5: Estimation of river cross-section properties. 13

1.6 Practical hints. 16
1.6.1 Processing of raster data. 16
1.6.2 Making input grids consistent. 16
1.6.3 Creating a proper shape file. 17
1.6.4 Handling very short reaches. 17
1.6.5 Special features in the river net. 18
1.6.6 Extraction of river-cross sections from elevation models 19

1.7 TODO . 19
1.7.1 HRU support. 19

2 R-package for model optimization (mops) 21
2.1 Purpose. 21
2.2 Installation . 21
2.3 Standard documentation. 21
2.4 Theoretical background. 22

2.4.1 Goal of optimization. 22
2.4.2 Optimization methods. 22
2.4.3 Model error as objective function. 22
2.4.4 Semi-automatic calibration. 23

2.5 Important methods inmops . 24
2.5.1 update_template . 24
2.5.2 modelError_multiDim . 25
2.5.3 mcs_run andmcs_eval . 25

2.6 Example: Monte-Carlo simulation. 25

5

6 Contents

2.6.1 Model equations. 25
2.6.2 Model implementation. 25
2.6.3 Observed data. 27
2.6.4 Monte-Carlo experiment. 28

2.7 Usingmops with anechse-based model. 29
2.8 Troubleshooting. 31

2.8.1 General recommendations. 31
2.8.2 Specific recommendations. 32

3 Filling of gaps in meteorological time series (meteofill) 33
3.1 Purpose. 33
3.2 Methods. 34

3.2.1 Filling of gaps . 34
3.2.2 Inverse-distance approach. 35
3.2.3 Residual interpolation. 36

3.3 Arguments and invocation ofmeteofill . 37
3.4 Input. 38

3.4.1 Locations table. 38
3.4.2 Time series file. 39

3.5 Output. 39
3.6 Hints for practical usage. 39

3.6.1 Missing-only data (options beyond persistence). 39

4 River cross-section analysis (xsAnalyzer) 41
4.1 Purpose. 41
4.2 Methods. 41
4.3 Arguments and invocation ofxsAnalyzer . 42
4.4 Input. 43

4.4.1 Geometry data. 43
4.4.2 Flow values of interest. 43
4.4.3 Units . 43

4.5 Output. 45

5 Time series visualization tool (tsplot) 47
5.1 Purpose. 47
5.2 Required software. 47
5.3 Instructions files. 47
5.4 Expected format of data files. 48
5.5 Invokingtsplot . 49

5.5.1 On Linux . 49
5.5.2 On Windows . 49

List of figures 51

List of tables 53

Bibliography 54

Chapter 1

Catchment modeling utilities (R-package
topocatch)

1.1 Purpose

The purpose oftopocatch (Kneis, 2013) is to ex-
tract and pre-process information required by semi-
distributed rainfall-runoff models from spatial data.
This includes, for example

• the identification of (sub)-catchments.

• the determination of basic attributes of sub-
catchments and river reaches.

• the analysis of input-output relation between the
modeled objects (catchments, reaches, nodes,
etc.).

• the estimation of river-cross section properties for
sites where no survey data are available.

topocatch is distinguished from similar pre-
processors by the following attributes:

Non-interactive Once a suitable R-script is written,
the pre-processing runs without user interaction. Thus,
whenever the spatial input data changes due to updates,
corrections, or modifications,all steps of processing
can be repeated without any effort.

Optional river net generation Pre-processors for hy-
drological models typically generate a river net from
the digital elevation model (DEM). This option is also
available intopocatch. As an alternative, however,
the user can supply an existing river net file. Such a file
may originate, for example, from digitized topographic
maps, field surveys or it could be a DEM-derived river

net including manual adjustments. Supplying an exter-
nal (or manually modified) river net file results in great
flexibility. Some advantages are:

• It can be achieved that the computed sub-
catchments closely correspond to their natural
counterparts.

• The user has the chance to split long reaches into
several shorter segments and, hereby, gets control
over both the minimumand maximumsize of sub-
catchments.

• Special features (such as reservoirs, canals, or
pipes) may be integrated into the river net file and
considered in the processing.

Created output The produced outputs are mostly in
a format which can readily be used as input to rainfall-
runoff models built with theechse simulation envi-
ronment (seeKneis, 2012a).

Until 2012, topocatch used to be single, self-
contained R-script whose behavior was controlled by
a large number of configuration options. In 2013,
topocatchwas converted into a regular R-package to
facilitate software maintenance, distribution, and docu-
mentation. Therefore,topocatch is no longer a sin-
gle, ready-to-use script. Instead, the user has to write
his/her own R-script that combines the various meth-
ods supplied by the package in a reasonable way. Some
guidelines are provided in subsequent sections. Refer to
the package’s documentation for details on the various
methods.

7

8 Chapter 1 Catchment modeling utilities (R-packagetopocatch)

1.2 Installation

In order to use thetopocatch, theR software for sta-
tistical computing is required. SeeKneis (2012b) for
information on how to obtain and install this software.

Thetopocatch package is distributed as a tarball
archive. See the respective section inKneis(2012b) for
more information on how to install such add-on pack-
ages on your system. Note thattopocatch internally
uses Fortran source code. Thus, a Fortran compiler
must be available on the system in order to successfully
build the package. The recommended compiler is GNU
gfortran.

Currently, topocatch depends on the following
additional R-packages:shapefiles, maptools,
andforeign. These packages need to be installed
prior totopocatch.

1.3 Standard documentation

After thetopocatch package has been loaded with
the R command

library("topocatch")

a list of all provided methods can be generated with

help(package="topocatch")

The documentation of the individual methods can be
displayed by typing the question mark followed by the
name of the method, for example

?hydroModelData

Those who consider to use this package for the first
time probably want to read the following sections to get
a better understanding of the general concepts and the
purpose of the various methods.

1.4 Supported data file formats

1.4.1 Overview

A typical pre-processing script for hydrological model-
ing usingtopocatch uses the following spatial data
sets as input (see Fig.1.1):

A digital elevation model (DEM) as a gridThe grid
values can be either integers or floating point
numbers.

Figure 1.1: The four spatial input data sets oftopocatch.

One or more soil maps as grid(s)The grid values can
be integers (e. g. encoding the soil types) or quan-
titative properties such as conductivities, for exam-
ple.

A map of land useThe grid values are usually integers
encoding the land use classes.

An optional vector file representing the river netMust
be a shape file containing line features (sometimes
called arcs). The attribute table must have (at
least) one field with feature IDs (of integer type)
and a class field (of type string). See Sec.1.6.3
on practical issues and restrictions related to the
creation of this file. If this input is not available,
topocatch provides a method to generate an
appropriate vector file from the DEM.

Thus, we deal with both raster and vector data.

1.4.2 ASCII grid format

All input raster data, e. g. those mentioned in Sec.1.4.1,
used bytopocatch must be ASCII grids. This is a
widely used exchange format for spatial raster data. It
was originally used by ESRI’s GIS systems but can be

1.5 Typical usage 9

ncols 6
nrows 5
xllcorner 3310800
yllcorner 5601975
cellsize 100
NODATA_value -9999
0 0 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 -9999
1 1 2 2 2 -9999
1 2 2 3 3 5

Figure 1.2: Example of a file in ASCII grid format.

imported and exported by many other GIS, including
free software such as QGIS.

A file in ASCII grid format is a plain text file
(Fig. 1.2). The first six lines of the file contain header
information and the remaining lines hold the actual grid
data as a matrix (one row per line). The meaning of the
keywords in the header in as follows:

ncols Number of columns in the matrix of values start-
ing at line 7 of the file.

nrows Number of rows in the matrix of values starting
at line 7 of the file.

xllcorner X-coordinate corresponding to the lower left
corner of the cell in the lower left corner of the
matrix. Defines the Western border of the grid.

yllcorner Y-coordinate corresponding to the lower left
corner of the cell in the lower left corner of the
matrix. Defines the Southern border of the grid.

cellsize Length of a grid cell’s edge. This is a single
value, i.e. cells are quadratic.

NODATA_valueNumerical value used to identify
missing (or invalid) data in the values matrix.

1.4.3 Shape file format

This vector geo-data format can be im- and exported by
most GIS systems including ESRI’s GIS software, and
QGIS, for example. It can be imported and exported
by R as well. A shape file consists of (at least) three
separate files with an identical basename and the ex-
tensions.shp, .shx, and.dbf. These are binary

files containg coordinates, indices, and attribute data,
respectively.

1.5 Typical usage

The methods provided by thetopocatch package can
be combined in various ways. The subsequent sections
describe a typical case of usage based on the most im-
portant high-level routines.

1.5.1 Step 1: Filling of the elevation model
(dem.fill)

Most digital elevation models (DEM) contain sinks.
They represent either natural or man-made depressions
in the earth surface or artifacts of remote sensing. The
filling of such sinks is a necessary step because their
existence would hinder the identification of continu-
ous drainage paths. In contrast to other software tools,
the designated method intopocatch uses a non-
iterative approach to fill the sinks. Its method’s name
is dem.fill. See the package’s internal documenta-
tion for details on the method’s arguments.

For large elevation models, the filling of sinks may
consume a considerable amout of computation time.
Therefore, it may be favourable to applydem.fill
once and to save its output for later re-use. This is
highly if the entire pre-processing script is still under
development.

1.5.2 Step 2: Analysis of the filled eleva-
tion model (dem.analyze)

The methoddem.analyze is used to analyze the
sink-filled elevation model. It computes flow direction
codes, the flow accumulation, the concentration time
index and it finally generates a vector file of the flow
paths. See the package’s internal documentation for de-
tails on the method’s arguments. Some details on inter-
nal algorithms are given below.

Identification of flow directions

The flow direction is computed for each cell of the
DEM. It is identical to the direction of the steepest
downward gradient (single-direction approach). The
used algorithm is capable of handling locally flat areas.
The result is an integer grid with values in the range
1. . .8. The meaning of these codes is shown in Fig.1.3.

10 Chapter 1 Catchment modeling utilities (R-packagetopocatch)

Figure 1.3: Flow directions encoded as integer values.

Calculation of flow accumulation

For each cell of the DEM, the flow accumulation is
computed as the number of upstream cells. This in-
formation is obtained from the grid of flow direction
codes.

Calculation of concentration time indexes

A concentration time indexcti is computed for each
raster cell. Thecti is derived from the definition of the
flow velocity u according to Eqn.1.1 and Manning’s
equation (Eqn.1.2).

u =
L

T
(1.1)

u =
1

n
·
√

S0 ·R2/3 (1.2)

In Eqn.1.1, L is the length of the flow path andT
is the corresponding travel time. In Eqn.1.2, n repre-
sents the roughness (known as Manning’s n),S0 is the
energy slope, andR is the hydraulic radius. For steady
flow problems,S0 is equivalent to the surface slope. For
small flow depths (in particular for overland flow),R
is dominated by the flow width and the flow depth has
little influence. Merging Eqns.1.1 & 1.2 into a sin-
gle expression and solving for the travel timeT yields
Eqn.1.3.

T =
L

1/n ·
√
S0 · R2/3

(1.3)

Thecti is finally derived from Eqn.1.3by simply ne-
glecting the linear terms1/n andR2/3. This is equiva-
lent to treatingn/R2/3 as a scaling constant for which

a value of 1 is assumed. Then, thecti for a particu-
lar cellk of the elevation model can be calculated with
Eqn.1.4.

cti(k) =

nk
∑

i=1

Li
√

dzi/Li

(1.4)

In this equation,nk represents the number of raster
cells through which the runoff generated in cellk must
flow until it is discharged into a river.Li is the (horizon-
tal) length of path segmenti. If the flow direction code
of cell i is 2, 4, 6, or 8 (see Fig.1.3), Li is equivalent
to the width of a raster cell. If the flow direction code
is an odd number,Li is the width of a cell multiplied
by

√
2. Furthermore,dzi is the elevation difference be-

tween celli and the neighboring cell into which celli
drains. The user must specify a lower limit fordzi to
avoid zero division in cases where a flow path crosses a
flat area.

In the resulting grid, thecti value of a cell will be
larger, the longer the flow path and the lower the sur-
face slope along the flow path is. Smallcti values
are found for near-river cells and where steep surface
slopes occur. Later in the processing, characteristic val-
ues (such as a meancti) are computed for the individual
catchments. These values may be used as indicators for
the rate of runoff concentration in the individual catch-
ments, since they integrate information on the catch-
ment’s shape, drainage density, and slope. The indica-
tors primarily reflect thedifferencesbetween the catch-
ments in terms of runoff concentration. To estimate ac-
tual concentration times, thecti values need to be mul-
tiplied by appropriate calibration parameters (recall the
derivation of Eqn.1.4from Eqn.1.3).

Generation of drainage lines (river net)

Thedem.analyze method finally generates a shape
file representing the drainage lines, i. e.rivers, based on
the computed flow direction codes. Since the elevation
model is the only source of information used, the result
may differ from reality. This is especially true where the
drainage network was altered by human action (canals,
reservoirs, river training, etc.).

1.5.3 Step 3: Identification of model ob-
jects (hydroModelData)

After the DEM has been pre-processed and analyzed
by dem.fill and dem.analyze, the major ob-

1.5 Typical usage 11

jects used in hydrological modeling (sub-basins, river
reaches, etc.) need to be identified. This is achieved
by a call to the high-level methodhydroModelData.
See the package’s internal documentation for details on
the method’s arguments. Some background on the in-
ternal algorithms is provided below.

Vector-to-raster conversion of drainage lines

For the identification of sub-basins, the drainage lines
must be converted to a grid. The drainage lines must
be provided as a shape file which can be created in the
following ways:

• It can be generated bydem.analyze which is
the usual option for catchments without human al-
teration of the drainage system.

• It can an output ofdem.analyze with subse-
quent manual modifications. Such modifications
are typically required to take special objects like
reservoirs, for example, into account.

• The shape file can be a digitized version of the
basin’s true river net. In this way it can be achieved
that the generated sub-basins correspond to the ac-
tual river net as close as possible.

The result grid is of type integer and has the same ex-
tent and resolution as the DEM. The value of grid cells
touched by a particular line feature is set to the corre-
sponding value of the shape file’s ID field. A special
’nodata’ value is assigned to all grid cells not touched
by any line feature. Another special ’conflict’ value
is assigned to cells which are touched by several lines
(with different IDs). After this step, a buffer (having the
width of a certain number of cells) is created around the
gridded lines (see Fig.1.4).

The result grid is used later to initialize the compu-
tation of catchments. Note that line features to which
no catchment should be assigned are excluded from the
vector-to-raster conversion. The IDs of those features,
therefore, do not appear in the result grid. Whether a
catchment is generated for a particular line feature is
mainly controlled by the entry in the class field of the
shape file’s attribute table.

Building of catchments

The catchments are determined based on the grid of
the flow directions and the grid of the rasterized lines
(Fig. 1.4). The latter grid is used as an initial estimate

Figure 1.4: Steps of the vector-to-raster conversion. Left:
Line features as vectors data. Middle: Gridded line features.
Right: Gridded lines after buffering using a width of 1 cell.
The ’nodata’ value is indicated by white color, the ’confict’
value by gray color.

Figure 1.5: The approach used to iteratively build the catch-
ments. The dark-colored cells represent the initial cells car-
rying the ID of the corresponding reach (a buffer was omitted
in this example). The arrows indicate the flow directions. In
each iteration, new cells (in lighter colors) are added to the in-
dividual catchments. The gray-colored cell in the left gridhas
the special ’conflict’ code because the junction of the reaches
is located in that cell. A catchment is assigned to this cell too
but the cells in this catchment carry a special ’conflict’ value
instead of a valid ID. These cells are reallocated (i. e. added
to the surrounding catchments) in a later step of processing.

of the catchments where only near-river cells are set (to
the ID of the corresponding reach). Starting from these
reach cells (or near-reach cells if a buffer is used), the
individual catchments ’grow’ step-by-step by adding
cells which discharge into the already set cells (accord-
ing to the flow direction grid). The procedure continues
until the catchments have reached their final size, i. e.
there are no more cells to add. The approach is illus-
trated in Fig.1.5.

As illustrated in Fig.1.5, cells discharging into a
’conflict’ cell (i. e. a cell that is in contact with mul-
tiple reaches), cannot be assigned to the catchment of
a particular reach. Those cells are currently filled by a
simple nearest neighbor interpolation.

Hydrological network assembly

In this step, the linkage of the different objects (usually
reaches and catchments) is analyzed and information on

12 Chapter 1 Catchment modeling utilities (R-packagetopocatch)

input-output-relations are dumped to tables. These ta-
bles can directly be used as an input for object-based
hydrological catchment models built with theechse
software.

The analysis of the network comprises a number of
sub-steps, of which only the most important are men-
tioned below:

1. The data in the shape file of the river network are
checked for errors (non-unique IDs, missing at-
tributes, etc.).

2. The reach defining the systems outlet is identified.

3. For each line feature contained in the shape file,
the downstream neighbor is determined. In the
usual case, this means that for each reach object,
the connected downstream reach is identified.

4. A catchment object is being linked to the line fea-
tures (namely to all reach objects). Whether this
actually happens for a particular line feature de-
pends on the class of the feature (defined in the at-
tribute table’s class field) and further user-supplied
settings.

5. The upstream neighbor(s), if any, are identified for
each line feature. If the number of upstream neigh-
bors is greater than 1, an appropriate node object
is inserted. The function of the node object is to
collect the information (usually inflow data) from
all upstream neighbors and to provide this infor-
mation to the receiving downstream object.

6. Several output tables are generated.

Finally, basic attributes of the major objects are com-
puted. For sub-basins, the location of the center of grav-
ity and the drained area are calculated. For river reaches
the computed properties include

• the coordinates and elevation of end points,

• the reach length,

• the estimated bed slope,

• and the total area of upstream catchment.

As an optional step, the relation between the identi-
fied objects and stream gages can be identified. It is then
known for each object whether a particular stream gage
is affected by this object’s output. Such information is
helpful during the calibration of hydrological models.

It also helps to spatially ’truncate’ the model, i. e. to
restrict the model domain to the catchment of a specific
stream gage.

1.5.4 Step 4: Calculation of additional
sub-basin attributes

Many hydrological catchment models require addi-
tional data in order to derive the sub-basin’s parame-
ters. Most typically, such information is obtained from
digital maps of soil properties and land use.

For the purpose of data extraction from such
maps thetopocatch package provides the two
methods geogrid.zones.continuous and
geogrid.zones.classified. Both methods
require as input

1. a primary grid with the computed sub-basins
(defining the zones) and

2. a second grid with the data to be analyzed for each
zone.

Extraction of continuous data

The geogrid.zones.continuous method as-
sumes that the second input grid contains data on a spa-
tially continuous variable like elevation, for example.
For each individual zone (i. e. sub-basin) it calculates a
statistics of that variable, namely the arithmetic mean,
quantiles, and extremes with respect to the zone.

The method is typically used to determine for all sub-
basins an average value and/or range of

• elevation,

• a quantitative soil property (depth, hydraulic con-
ductivity, etc.),

• the concentration time index returned by the
dem.analyze method.

Extraction of classified data

In contrast to that, the
geogrid.zones.classified method as-
sumes that the second input grid contains classified
information such as land use codes (typically integers).
For each individual zone (i. e. sub-basin) it calculates
the areal shares of all the classes.

The method is typically used to determine the areal
fractions of land use classes for all sub-basins.

1.5 Typical usage 13

1.5.5 Step 5: Estimation of river cross-
section properties

Purpose

Hydrological catchment models usually require river
cross-section (x-section) information to be available for
all modeled river reaches. This is because the propa-
gation and attenuation of flood waves is controlled by
the river’s bed slope as well as the cross-section’s con-
veyance (hydraulic radius, wet area, and roughness).

In real-world river basins, x-section survey data are
usually available for a very limited number of reaches
only. Consequently, x-section data for all other reaches
being part of the model domain need to be estimated. If
estimates cannot be gathered from the elevation model
(see Sec.1.6.6), a spatial regionalization approach has
to be adopted. The designated method intopocatch
to perform this task isxs.reachPars. See R’s inter-
nal help for detailed help on this methods’s input argu-
ments and outputs. Some additional background infor-
mation is provided below.

Hydraulic properties of a single x-section

According to Manning’s equation (Eqn.1.5), thesteady
flow rate (Q) is controlled by four factors:

n The channel’s roughness (friction and turbulence)

S0 The slope of the channel.

R The hydraulic radius.

A The x-section’s wet area.

Q =
1

n
·
√

S0 ·R2/3 ·A (1.5)

Eqn. 1.5 assumes that the x-section has a compact
shape and, therefore, the channel’s roughness can be de-
scribed by a single value ofn. In real x-sections, vary-
ing n values may be appropriate to describe the differ-
ent resistance of the main channel and the flood plain
(Cunge et al., 1980). However, the current version of
topocatch is not capable of handling such so-called
compound cross-sections and always assumes a unique
n value1.

1Compound cross-sections may be analyzed with the software de-
scribed in Chap.4

Figure 1.6: Definition of basic properties of a river cross-
section (D: Flow depth,A: Wet area,P : Wet perimeter). The
hydraulic radius isR = A/P .

The two factorsA andR in Eqn.1.5are functions of
the flow depthD (see Fig.1.6). The shape of these func-
tions is determined by the x-section’s geometry. The
steady flow rateQ is a function ofD as well andQ(D)
represents therating curve. From Eqn.1.5it is also ob-
vious that there is a functional relation betweenQ and
A. Considering that the storage volumeV of a reach
with lengthL equalsA · L, there are also functional
relationsQ(V) andV (Q), respectvely.

In topocatch, it is assumed that, for an individual
x-section, the characteristic functionsA(D) andR(D)
can be approximated by simple power functions as in
Eqn. 1.6 & 1.7. In these equationsa, b, c, andd are
empirical coefficients to be identified by least-squares
fitting.

A(H) =a ·Db (1.6)

R(H) =c ·Dd (1.7)

Cross-section estimation for arbitary sites

For reaches where x-section information is not avail-
able, a multi-step estimation procedure is applied by
xs.reachPars. It aims at estimating the functions
Eqns.1.6& 1.7rather than the actual geometry data.

In thefirst step, two ’parent cross-sections’ are iden-
tified from the pool of available survey data. These two
cross-sections are selected in a way that

1. the parent cross-sections are located as close as
possible to the reach of interest, and

2. the 1st cross-section has a smaller upstream catch-
ment area and the 2nd one has a larger upstream
catchment area than the reach of interest.

14 Chapter 1 Catchment modeling utilities (R-packagetopocatch)

Figure 1.7: Selection of parent cross-sections for interpola-
tion. In the example, the data from A and B would be used to
estimate the x-section’s properties at location Z.

Figure 1.8: Interpolation of the cross-section’s characteris-
tic functions. Solid lines: Known relations for parent cross-
sections. Dashed: Interpolated relation for a target location
without survey geometry data.

This is illustrated in Fig.1.7. Note that the two parent
cross-sections are not necessarily located at the same
branch of the river net.

In thesecond step, the characteristic functionsA(D)
andR(D) are computed for the two parent cross sec-
tions (solid graphs in Fig.1.8).

Finally, in thethird step, the characteristic functions
A(D) andR(D) for the reach of interest are determined
as a weighted average (dashed graphs in Fig.1.8). The
applied weights are derived from the upstream catch-
ment areas. If, for example, the upstream catchment
area of the two parent cross-sections was 5 and 10 km2

and the reach of interest had an upstream catchment of 7
km2, the information of the parent cross-sections would
be weighted by(7− 5)/((7− 5)+ (10− 7)) = 0.4 and
(10−7)/((7−5)+(10−7)) = 0.6, respectively. Note
that, internally, the characteristic functions for all sites
are approximated by power laws (Eqns.1.6& 1.7).

Once the functionsA(D) andR(D) have been es-
timated for the reach of interest, all other hydraulic
properties can be derived using Manning’s equation and

Figure 1.10: Relation between the flow rateQ and the stor-
age volumeV for a linear reservoir and a river reach with an
irregularly shaped cross-section.

known values for the bed slope, the roughness, and the
reach length.

It has to be noted that the above-mentioned approach
of weighted averaging assumes that the x-sections’s
flow capacity (i. e. the values ofA andR for a given
flow depthD) are (positively) correlated with the size
of the upstream catchment. In many cases, this appears
to be a reasonable assumption. However, the correlation
may be weak (or not exist at all) if

• the river basin’s geology is heterogeneous, or

• a significant spatial gradient in rainfall is present.

In those cases, it may be better to sub-divide the river
basin into zones of homogeneous geology/climate and
to estimate the x-section characteristics separately for
the zones.

It should also be noted that the assumed correlation
between catchment size and flow capacity might not ex-
ist where cross-sections were constructed or altered by
human action.

Example of the output

An example output of thexs.reachPars method is
shown in Fig.1.9. The data in that table can be used
by hydrological models in various ways. Of special rel-
evance are the values in the column dVdQ. They rep-
resent the derivative of the reach’s storage volume with
respect to the flow rate. This value (with the unit of
a time) can be interepreted as the retention constant if
the reach was treated as a (piece-wise) linear reservoir
(Fig. 1.10).

1.5 Typical usage 15

Hydraulic properties of a reach for STEADY UNIFORM flow
Object ID: ’365’
Upstream area: 632.7
Reach length: 34485.996
Bottom slope: 0.000812
Roughness: 30
1st / 2nd parent cross-section:
IDs: ’xsEstim_in.extractedXS.xs5015.txt’ / ’xsEstim_i n.extractedXS.xs5037.txt’
weights: 0.998 / 0.00156
dist.s : 214865.7 / 195208.3
up. areas: 627.39 / 4023.72
Descr. of columns:
Q: Stream flow (L/T)
D: Normal depth, i.e. max. flow depth (L)
A: Wet x-section area (L^2)
V: Storage volume (L^3)
dVdQ: Est. derivative dV/dQ (T)
Q D A V dVdQ
0 0 0 0 96814.34
1 0.15 4.489 154817.373 96814.34
2 0.21 7.297 251631.715 91503.91
5 0.327 13.871 478349.54 69669.92
10 0.457 22.546 777510.074 56102.11
20 0.639 36.651 1263931.218 45967.99
50 0.995 69.66 2402299.489 34986.86
100 1.392 113.237 3905080.393 28179.45
200 1.946 184.069 6347792.32 23084.84
500 3.031 349.858 12065191.465 17571.48
1000 4.238 568.699 19612163.977 14151.79
2000 5.925 924.423 31879638.649 11593.46

Figure 1.9: Example of an output file created byxs.reachPars .

16 Chapter 1 Catchment modeling utilities (R-packagetopocatch)

1.6 Practical hints

1.6.1 Processing of raster data

In addition to the routines mentioned in Sec.1.5, the
topocatch package provides many additional func-
tions to facilitate the preparation of gridded spatial input
data. For example:

• geogrid.readAscii: Reads spatial grids in
ASCII format.

• geogrid.writeAscii: Outputs spatial grids
in ASCII format.

• geogrid.reclass: For classification of nu-
meric values in a grid.

• geogrid.fillGaps: Replaces missing cell
values based on a nearest neighbor search.

• geogrid.valuesAtPoints: Extracts data
from a grid for specified locations.

• xs.extractDEM: Extracts cross-sections from
an elevation model.

See the R-package’s built-in help for the full set of
provided methods.

1.6.2 Making input grids consistent

Some of the methods contained in thetopocatch
package expect multiple grid as input arguments. This
applies to thegeogrid.zones.continuous and
geogrid.zones.classified methods, for ex-
ample. In those cases, the grids must cover (exactely)
the same area with an identical resolution. In other
words, the first 5 lines (see Fig.1.4.2) of the corre-
sponding ASCII grid files need to be identical. Since
the data may come from different sources, a sequence of
processing steps is typically required to make the grids
spatially consistent. These steps are addressed in the
subsequent paragraphs:

Resampling The first step is to make the cell size
commensurate in all grids. This is typically known as
resampling. For floating point grids like the DEM (bi-
linear) interpolation approaches are appropriate. When
resampling integer grids (soil or land use data), one
must use nearest neighbor methods, of course, in order
not to introduce ’fractional’ classes.

Clipping The second step is to clip the grids to an
identical spatial window. The capabilities of clipping
may be different in different GIS software. In QGIS
1.7.3, for example, one has to load the GDAL exten-
sion. With this extension loaded, a ’Clipper’ functions
is available in the menue ’Raster – Extraction’ which
is capable of clipping grid data. The spatial target win-
dow of the clip operation can be defined either by an-
other layer or directly by specifying the coordinates of
the target window’s limits. For the Marikina catchment
(Philippines) for example, the following target window
was used:

Limit Value Defines border at

x1 289400 West

y1 1609000 South

x2 322200 East

y2 1641600 North

Conversion Once the grids have been clipped,
they should be exported in ASCII grid format (see
Sec.1.4.2). Most GIS systems have this functional-
ity. If this format is not supported, it may be possible
to export the data in another matrix-based text format
and then to manually add (or modify) the header (see
Fig.1.2). A typically used file extension for ASCII grid
files is.asc but this is not a true standard.

Final check Last but not least, the exported ASCII
grid files should be opened in a (powerful) text editor
and the first 5 lines of the header (see Sec.1.4.2) need
to be compared.

Although the same target window (or layer defin-
ing that window) was used in the clipping operation,
it may happen that the header information are not ex-
actely identical. This is due to the fact that the clipping
simply removes cells outside the target window. It does,
however, not apply a real spatial transformation to the
data (which is more difficult) and, therefore, cannot cor-
rect for spatial shifts in x- or y-direction being smaller
than the extend of a single cell.

A possible solution would be to apply a real spatial
transformation prior to clipping of the grids. A more
convenient workaround is to simply substitute the head-
ers in all grids by the header of one ’master grid’ (the
DEM, for example). This approach works as long as
the first two lines in the original grid headers are iden-
tical (i.e. the grids have the same number of rows and
columns). The simple copy & paste approach will in-

1.6 Practical hints 17

troduce a spatial shift in two of the grids but the error
should be less than the extent of a single cell. This will
be tolerable in most situations (considering that a spa-
tial transformation is an approximation as well).

After this step, the header information in the grids
should be identicalto the very last digit, which is a pre-
requisite to run some oftopocatch’s methods.

1.6.3 Creating a proper shape file

As mentioned in Sec.1.4.1, a shape file of line features
representing the river network is required as an input to
thehydroModelData method. If this file is created
manually rather than being generated bytopocatch’s
dem.analyze method, several aspects have to be
considered related to both attributes and geometry.

Attributes The attribute table of the shape file must
contain at least two fields: An ID field and a class field.
The names of these fields can be chosen freely but rec-
ommended are ’id’ and ’class’, respectively.

The ID field must contain auniquevalue that identi-
fies each single feature in the shape file, i. e. each single
reach. The ID field should be of type integer.

The class field should be of string type. It allows
to distinguish different classes of line features and to
convey this information totopocatch. In a simple
river system, a useful entry in the class field would be
’reach’, for example, and this would be identical for all
features. However, it would also be possible to include
special features of a river network (such as reservoirs)
in the shape file. For those features, a different class
name (such as ’reservoir’) would have to be entered in
the class field.

Geometry and topology The conditions that must be
fulfilled in terms of the features’ geometry and topology
are as follows:

Single-part lines onlySome GIS systems support
multi-part lines (line features with gaps in be-
tween). These must not appear in the shape
file.

End-to-end connectionsLine features must always be
connected end-to-end. Thus, a line must not end
at an intermediate vertex of another line. This also
implies that junctions are always formed by 3 (or
more) individual lines whose ends share the same
coordinates. The alternative model where a side

branch ends at some intermediate point of the main
branch is not supported (see Fig.1.11for an illus-
tration).

SnappingWhere two line features have a connection,
the coordinates of the connected end points need
to be exactly identical (to the very last digit).
When digitizing the lines manually, this canonly
be achieved by using the so-called snap function-
ality provided by all GIS systems.

No loops The current version oftopocatch only
supports tree-like river systems. Thus, flow splits
followed by junctions further downstream (i. e.
loops) must not exist in the river net.

Minimum length of reachesAs a rule of thumb, line
features representing objects with a correspond-
ing catchment – namely reaches – should not be
shorter than about 4–5 times the cell size of the
input grids. Thus, if the elevation model has a
resolution of 100 m× 100 m, reaches should not
be shorter than about 400–500 m. This is due to
the fact that the shape file (vector data) is con-
verted to a grid (raster data) withintopocatch’s
hydroModelData method and too short line
features may get lost. Possible solutions for cases
where the natural river system contains critically
short reaches are discussed in Sec.1.6.4. Note that
line features to which no catchment should be as-
signed (which must be identified by an appropriate
entry in the attribute table’s class field) can be of
arbitrary length.

Orientation of linesThe orientation of the individual
line features is of no importance. Thus, it is OK
to digitize lines in upstream or downstream direc-
tions and mixing both directions in the shape file
is OK too.

1.6.4 Handling very short reaches

In dense drainage networks, reaches may exist whose
length is critically short (Fig.1.12). Critical means
that the length is less than about 4 times the resolution
of the input grids (see Sec.1.6.3). Those very short
reaches may get lost during vector-to-raster conversion
in the hydroModelData method andtopocatch
will generate an error because no catchment could be
generated for some of the reaches contained in the shape
file.

18 Chapter 1 Catchment modeling utilities (R-packagetopocatch)

Figure 1.11: Left: Proper junction formed by three individ-
ual reaches (identified by different colors and styles). Right:
Improper junction with a tributary ending in the mid-section
of another reach.

There are several possible solutions to this problem:

Increasing the grid resolutionBy resampling the ele-
vation model (and all other input grids) to a finer
resolution, the reach lengths increases relative to
cell size. Consequently, there is a higher chance
that even short reaches are retained in the vector-
to-raster conversion. The drawback of this ap-
proach is, however, that the input grids become
much larger and the computation becomes slower.
For example, reducing the cell size to 1/2 increases
the number of values in the data matrix by a factor
of 4.

Removal of the short reachesAn alternative would be
to edit the shape file and remove the critically short
reaches. In the example shown in Fig.1.12, this
would mean that the short dashed line is deleted
and the junctions up- and downstream of that reach
are merged into an artificial junction with three in-
flows. The drawback of this approach is that man-
ual work is necessary. Also, the shape file does no
longer represent the actual network. Finally, if a
very large number of short reaches is deleted, this
may also lead to a systematic error in travel times.

Increasing the reach lengthThe very short reaches
could also be made longer manually in order to
increase the probability of a successful vector-to-
raster conversion. The disadvantages are similar to
those related to the removal of the short reaches.

Using a separate classAnother option which is rec-
ommended in most cases is to declare the short
reaches not as reach objects but as instances of a
different class. An appropriate name for this class
might be something like ’shortReach’ or ’link’.
This is simply achieved by changing the entry in
the attribute table’s class field for the critically

Figure 1.12: Typical example of a critically short reach in a
dense river network.

short reaches to ’shortReach’ or ’link’, respec-
tively. Most GIS systems provide a suitable tool
to do this sort of table column calculations using
expressions. One can then informtopocatch’s
hydroModelData method that no catchments
should be build for objects of that special class.
This essentially solves the problem, because (like
all features not having a catchment), the short
reaches are excluded from the vector-to-raster con-
version. As a consequence, however, the newly
introduced class must also be declared and imple-
mented in the rainfall-runoff model. This class
could either provide the same functionality as the
normal reach class or just have the functionality of
a link (which simply copies its input to its output).
If the shape file is generated bytopocatch itself
(dem.analyzemethod), one may specify a crit-
ical reach length to automatically assign a different
class name to short reaches.

1.6.5 Special features in the river net

As discussed earlier, the shape file may also contain
other objects than river reaches. Such ’special’ objects
must

1. be represented as lines, even if the objects are ac-
tually punctual (like gages or control structures,
for example), or have an areal extent (reservoirs,
lakes, etc.). This is due to the nature of the shape
file format which restricts the contents to a single
feature class (pointsor linesor polygons).

2. be indicated by an appropriate entry in the attribute
table’s class field.

Furthermore, if a catchment should be assigned to
these objects (as in the case of lakes, for example),

1.7 TODO 19

one needs to maketopocatch’shydroModelData
method aware of this fact.

Example 1: A gage

In a standard hydrological model, one would probably
not treat gages as model objects. One would rather sim-
ply let the model output the flow rate of the reach to
which the gage is attached. In operational models, how-
ever, is may be useful to treat gages as objects, because
then, a gage may have some functionality. Typically,
the observed flow would be defined as an external input
variable of gage objects. In addition, some user-defined
rule would be implemented that controls whether the
simulatedor observed flow rates are submitted to the
reach downstream of the gage.

In the shape file, a punctual gage object could be rep-
resented by a very short line feature (say of 1 m length).
The resulting error in the system’s total reach length
would then be negligible.

Example 2: A reservoir

Some more effort is necessary to include objects with
an areal extent into the shape file of line features. This
is demonstrated in Fig.1.13with the example of a reser-
voir with two inflows. In situations like these, one must
chose one line to represent the actual object. In the ex-
ample, this is the line with ID 100. It is digitized in
a zigzag manner to roughly cover the reservoir’s sur-
face area. This is done with the aim of increasing the
chance that the reservoir’s ’direct’ catchment (i. e. the
area draining to the reservoir’s shore line) is properly
estimated from the elevation model.

To establish the original inter-connection, an artifi-
cial object with ID 101 is introduced. It is defined as an
object of a separate class, here named ’link’. The func-
tionality of this class is to simply transfer data. In the
example, this link object redirects the outflow of reach
1 to a single inflow location for the reservoir without
introducing a time lag.

1.6.6 Extraction of river-cross sections
from elevation models

In Sec. 1.5.5 it was mentioned that data on river
cross-section geometries are required for the set-up
of many hydrological models. Since survey data are
usually scarce, it may be desireable to extract such

Figure 1.13: Representation of a reservoir with two inflows
in a map (top) and in the input shape file (bottom).

data from digital elevation models. For that pur-
pose, thetopocatch package provides a method
xs.extractDEM. See the R-package documentation
for more information.

1.7 TODO

1.7.1 HRU support

The current version oftopocatch doesnot generate
the information needed by rainfall-runoff models using
the hydrological reaction unit (HRU) approach. This is
because of the fact that, so far, theechse-based hydro-
logical models are intended to be used in operational
forecasting. Such models typically need to be sim-
pler than more process-oriented models for the sake of
computational efficiency. However, it is not difficult to
let topocatch generate input for HRU-based models
and a future version might support this.topocatch’s
source code would have to be adapted in two ways:

1. Soil and land use information need to be merged
into a single map prior to the calculation of areal
shares with respect to the sub-basins using the
geogrid.zones.classifiedmethod. This
could be done, for example, by multiplying the soil
code by a factor of 1000 and then adding the land
use code. Then, the code of a HRU consisting of
soil type 5 and land use type 12 would be 005012.

2. In thehydroModelData method, an array of
HRU-objects must be assigned to all reaches (and

20 Chapter 1 Catchment modeling utilities (R-packagetopocatch)

possibly further objects). At present, a single
catchment object is assigned only.

Chapter 2

R-package for model optimization (mops)

2.1 Purpose

The R-packagemops provides a number of methods
to facilitate the optimization of model parameters. The
methods may be useful in the context of

• model calibration.

• updating of operational models.

• optimization studies.

The methods provided in themops package are de-
signed for the following conditions:

• The model, whose parameters are to be optimized,
must be an executable file. In practice, this can be
an executable built from source code (C++, FOR-
TRAN, etc.) or a shell script. If it is a shell
script, it typically calls an interpreter to process
code written in a script language (R, Python, etc.).

• The executable must read the parameter values
from plain text files. Thus, parameter values must
not be read from binary files or passed as com-
mand line arguments.

• The input parameters to be optimized must be
floating point numbers. Internally, of course, the
model can apply any kind of type conversion (typ-
ically to integer or logical).

• The text files holding the parameter values may
be of arbitrary structure. However, the executable
must read the numbersunformatted. In other
words, when reading a numeric value of one,
for example, it must accept all of the following
character representations1, 1., 1.0, 1.0e+00,
0.1e+01. Note that legacy code sometimes uses

formattedread statements and may be incompati-
ble withmops.

echse-based models generally comply with all of
the conditions listed above.

2.2 Installation

Themops package is provided as a tarball. The pack-
age file name ismops_x.y.tar.gz where x.y is a
version number. SeeKneis (2012b) for details on the
installation procedure.

Note that themops package depends on another R-
package calledlhs which allows for latin hypercube
sampling. If thelhs package is not installed already, it
needs to be downloaded and installedprior to installing
mops.

2.3 Standard documentation

After the mops package has been loaded with the R
command

library("mops")

a list of all provided methods can be generated with

help(package="mops")

The documentation of the individual methods can be
displayed by typing the question mark followed by the
name of the method, for example

?modelError_MCS

As always, the standard documentation for the meth-
ods is rather short. New users probably want to read

21

22 Chapter 2 R-package for model optimization (mops)

the following sections to get a better understanding of
the general concepts and the dependencies between the
methods in themops package.

2.4 Theoretical background

2.4.1 Goal of optimization

Optimization generally refers to the minimization1 of
the value of a function whose value depends on one
or more parameters. This function is called theobjec-
tive function. Let’s write the objective function asf(p),
with f being the function’s name andp being a vector
of parameters. In the special case of one-dimensional
optimization,p is simply a vector of length 1.

The goal ofany optimization procedure is to find a
set of values for the parametersp that minimizes the
value off .

Example 1 (minimization, 1-dimensional): Deter-
mine the optimum dosage of a medicine for malaria pro-
tection that minimizes the total number of death from
both infection and serious side effects (f : number of
casualties,p: dosage).

Example 2 (maximization, 2-dimensional): Deter-
mine the amounts of fertilizer and water to maximize
the yield of a tomatoe field (f : yield, p: amounts of
fertilizer and water).

2.4.2 Optimization methods

Depending on the nature off (non-linearities, disconti-
nuities, local minima, etc.) and the number of unknown
parameters inp, the optimization problem is more or
less difficult to solve. Unfortunately, there is no general
strategy that performs best in all cases. In fact, it is not
even guaranteed that aglobal minimum off is found at
all.

One thing which is common to all optimization meth-
ods is thatmultiplecalls tof for varying values ofp are
necessary (bold arrow in Fig.2.1). Only then, the effect
of a change in the parameter value(s)p on the value of
f can be detected.

The basic strategies of optimization are distinguished
by the way of how a new proposal for the values inp is
generated, given the information from the previous calls

1To solve a maximization problem, the objective function is sim-
ply multiplied by−1.

Figure 2.1: Basic outline of an optimization method.

Figure 2.2: Basic outline of Monte-Carlo simulation.

to f for other values ofp. The most important distinc-
tion is betweendeterministicandstochasticalgorithms.
Some examples and references for both types of strate-
gies can be found in the help text of R’soptimmethod.

As opposed to ’complete’ optimization strategies, the
technique of Monte-Carlo simulation does not identify
a single optimum parameter set. Instead, the objective
function is simply evaluated for a large number of ran-
dom parameter sets (Fig.2.2). It is then up to a human
to inspect the output and to draw conclusions on the
suitability of parameter values.

2.4.3 Model error as objective function

In the context of a dynamic simulation, the objective
function measures the deviation between a simulated
time series (produced by the model) and a correspond-
ing time series of observations. Generally, the deviation
(synonyms: model error, performance, goodness-of-fit)
depends on the values of the model’s parameters. It may
be helpful to see that this is very similar to the com-
mon case of fitting a linear model to a set of x,y-data
(Fig. 2.3). The typical differences are:

• In dynamic modeling, the x-axis represents the
time.

2.4 Theoretical background 23

Figure 2.3: Goodness-of-fit for a dynamic simulation model
(left) and an empirical linear model (right).

• Real-world dynamic models often have more pa-
rameters than the linear model which has only 2
(slope and intercept).

• In many dynamic models, the relations between
parameter values and the output are non-linear.

• In the case of dynamic simulation models, numer-
ical methods are required to determine a set of op-
timum parameters (see Sec.2.4.2). For the linear
model, an analytical expression exists to directly
solve for slope and intercept.

The deviation between observations and the corre-
sponding simulated values can be quantified by a va-
riety of mathematical measures. In the case of linear
fitting (Fig. 2.3, right), the sum of squared errors (SSE)
is most often used. In dynamic modeling (Fig.2.3, left),
measures like the RMSE (root mean suared error) and
the Nash-Sutcliffe index are usually preffered. They are
based on the SSE as well but the values are more con-
venient to interpret.

In the context of dynamic modeling, the interior of
a objective functionf(p) typically contains the steps
listed in Table2.1.

2.4.4 Semi-automatic calibration

Environmental simulation models often have a large
number of conceptual parameters whose values have
to be calibrated based on observations. Without hav-
ing a deeper understanding of the model’s functioning,
i. e. the underlying equations, this is not a trivial task.
Even if the equations are known, multi-dimensional,
non-linear optimization remains a challenge and suc-
cess is not guaranteed. The classic, deterministic op-
timization algorithms may fail for a number of rea-
sons, such as truncation and round-off problems, insen-
sitive parameters, complicated parameter interactions

Table 2.1: Interior of an objective function in the context of
dynamic modeling. It is assumed that the model reads all pa-
rameter values from text files.

Task

1 Get current parameter setp (passed via the fun-
cion’s argument list).

2 Update the model’s input files with the current
values inp.

3 Run the model.

4 Read the model output (a time series).

5 Read observed data.

6 Compute the model error from the data read in
steps 4 & 5 using a suitable mathematical mea-
sure.

7 Return the result.

and compensations, non-continuous model behavior, or
the existence of local minima. The alternative is the
use of stochastic algorithms. Unfortunately, stochastic
optimizers usually come with a number of algorithms
parameters which affect convergence and computation
times. If established general-purpose defaults do not
exist, the estimation of these algorithm parameters is a
problem on its own. Finally, a manual calibration by
trial-and-error is often not practically feasible and the
results have the reputation of being subjective.

Therefore, it is sometimes a good idea to fall back on
the robust and straightforward concept of Monte-Carlo
simulation (Fig.2.2). Some advantages of Monte-Carlo
simulation are:

• It simply cannot fail as long as the tested parameter
sets do not cause invalid numeric results.

• There are no algorithm parameters.

• One can learn from the output about the
(in)sensitivity of parameters, even if the model is a
black box.

Especially useful is the concept of sequential Monte-
Carlo simulation. This concept can be described by the
following set of instructions:

a) Carry out a Monte-Carlo simulation with wide sam-
pling ranges for all parameters.

b) Visualize the results from stepa. For each varied
parameter, a scatter plot should be created with the

24 Chapter 2 R-package for model optimization (mops)

parameter value on the x-axis and the model error
on the y-axis.

c) Inspect all plots created in stepb. If a structure is vis-
ible in a plot, indicating an optimum range for the
particular parameter, modify the sampling range of
that parameter. Usually, the sampling range can be
chosen narrower (unless the initial range was not
wide enough).

d) Return to stepa, using the updated sampling range.

This semi-automatic approach to calibration has been
successfully used in hydrological modeling (see, e. g.
Kneis et al., 2012). It is certainly not among the most
efficient strategies. However, the chance of complete
failure is very low. Finally, with the above approach,
it becomes visible whether the optimization problem is
well behaved or of the nasty sort. Users of unsuper-
vised optimization algorithms can only hope for a well
behaved problem or guess on the cause of failure.

A practical example of parameter estimation using
sequential Monte-Carlo simulation can be found in
Sec.2.6.4.

2.5 Important methods inmops

2.5.1 update_template

As illustrated in Figs.2.1 and2.2, optimization meth-
ods and Monte-Carlo simulation involve many suc-
cessive of evaluations of the objective functions for
different parameter values. In each evaluation, the
model’s input files need to be updated (recall Ta-
ble 2.1). For this purpose, themops package provides
theupdate_templatemethod.

The method takes a template file and anamedvector
of numerical values as input. It then scans the template
file for the occurrence ofplaceholders. A placeholder
is a string enclosed by two designated characters, typ-
ically some sort of fancy brackets like{}, [] or <>.
Theupdate_template method tries to replace ev-
ery placeholder in the template file by the numerical
value of a matching element from the input vector. A
matching element is one whose name is identical to the
placeholder’s central string, i. e. the string between
the designated characters. The mode of action of the
update_template method is best demonstrated by
the examples in Figs.2.4and2.5.

Figure 2.4: Example application of the
update_template method. Here, the characters to
identify the start and the end of a placeholder are“{“ and
“}“ , respectively.

Figure 2.5: Another example application of the
update_template method. Here, the characters to
identify the start and the end of a placeholder are“<“ and
“>“ , respectively.

2.6 Example: Monte-Carlo simulation 25

Although theupdate_template can be called in
isolation, it is mainly used as a sub-routine in other
high-level methods of themops package.

2.5.2 modelError_multiDim

The modelError_multiDim is the central high-
level method of themops package. It represents a com-
plete objective function. For a given parameter set, the
method is able to perform all the steps listed in Ta-
ble2.1. It can directly be used together with R’s generic
optimization methodoptim.

2.5.3 mcs_run and mcs_eval

The methodsmcs_run and mcs_eval provide
a complete framework for Monte-Carlo simulation.
mcs_run generates the random parameter sets and car-
ries out all the simulations. The functionmcs_eval
calculates the corresponding model errors and creates
graphics to summarize the results of Monte-Carlo ex-
periments. A complete example for the use of these
methods is provided in Sec.2.6.

2.6 Example: Monte-Carlo simu-
lation

2.6.1 Model equations

This section introduces the practical use of the
mcs_run method to perform a Monte-Carlo simula-
tion. For the purpose of demonstration, we consider
the fairly simple 1-dimensional advection-dispersion
model (Eqn.2.1). It describes the 1-dimensional (lon-
gitudinal) transport of dissolved, non-reactive matter in
a river.

∂c

∂t
= d ·

∂2c

∂x2
− u ·

∂c

∂x
(2.1)

c Concentration (g/m3)

x River station (m)

d Dispersion coefficient in x-direction
(m2/s)

u Average flow velocity in x-direction
(m/s)

This partial differential equation model has two pa-
rameters,d andu. For certain conditions, Eqn.2.1has
the analytical solution presented in Eqn.2.2.

c(x, t) =
m

A ·
√
4 · π · d · t

· exp
(

−(x− u · t)2

4 · d · t

)

(2.2)

with the additional symbols
t Time (s)

m Mass (g)

A Wet cross-section area (m2)

This solution assumes that

• The injection of mass att = 0 occurs in an in-
finitesimally short time span.

• The mass is instantly distributed over the entire
cross-section.

• The flow is steady (constant rate) and uniform
(constant cross-section geometry).

The behavior of the model is illustrated in Figs.2.6
and2.7 for constant values ofm=100,a=1, d=30, and
u=0.5. Fig.2.6 shows the time series of concentration
(chemographs) that one would obtain by frequent anal-
ysis of water samples taken at a particular river station.
To get a picture as in Fig.2.7, one would have to or-
ganize synchronous sampling at multiple stations along
the river.

2.6.2 Model implementation

The C++ source code listed in Fig.2.8 implements
a simulation model based on the equations from
Sec.2.6.1. It solves Eqn.2.2for a fixed stationx and an
array of times. Thus, it computes a chemograph as in
Fig. 2.6. For compatibility with themops package, the
executable reads all input data – including the values of
the two parametersu andd – from a text file.

To build an executable from the source code in
Fig.2.8, the GNU C++ compiler can be used (seeKneis,
2012b, for mode info). Assuming that the source code
is saved in a file ’adModel.cpp’, an appropriate com-
mand line for compilation would be:

g++ -lstdc++ -o adModel adModel.cpp

26 Chapter 2 R-package for model optimization (mops)

#include<iostream>
#include<fstream>
#include<string>
#include<cmath>
using namespace std;

// Analytical solution of the 1-dimensional convection-di spersion eqn.
double c_xt (const double x, const double t, const double m, const double a,

const double d, const double u)
{ return(m/a/sqrt(4.*3.1415*d*t) * exp(-pow(x-u*t,2.) / (4.*d*t))); }

// Driver program
int main (int argc, char **argv) {

//////////// Read file names from command line /////////// ////////////////////
string cmd(argv[0]);
if (argc != 3) {
cout << "Usage: " << cmd << " inputfile outputfile" << endl; return(1); }

string name_ifile(argv[1]);
string name_ofile(argv[2]);
//////////// Read parameters from input file //////////// /////////////////////
ifstream ifile(name_ifile.c_str());
if (!ifile.is_open()) {
cout << "Input file ’" + name_ifile + "’ not found." << endl; return(1); }

double x, m, a, d, u, tmax, dt;
try {
string key;
for (unsigned int i=0; i<7; i++) {

ifile >> key;
if (key == "x") {ifile >> x;} else if (key == "m") {ifile >> m;}
else if (key == "a") {ifile >> a;} else if (key == "d") {ifile >> d;}
else if (key == "u") {ifile >> u;} else if (key == "dt") {ifile >> dt;}
else if (key == "tmax") {ifile >> tmax;}
else {throw("Unexpected parameter in input file.");}

}
} catch(...) {
cout << "Cannot read data from ’" + name_ifile + "’." << endl; return(1); }

ifile.close();
//////////// Open output ///////////////////////////// ////////////////////////
ifile.open(name_ofile.c_str());
if (ifile.is_open()) {
ifile.close();
cout << "Output file ’" + name_ofile + "’ exists." << endl; return(1); }

ofstream ofile(name_ofile.c_str());
if (!ofile.is_open()) {
cout << "Cannot open file ’" + name_ofile + "’." << endl; return(1); }

//////////// Print solution for the times of interest ///// ///////////////////
double t=0.;
while (t <= tmax) {
if (t == 0.) { ofile << "t\tc" << endl << t << "\t" << 0. << endl; }
else { ofile << t << "\t" << c_xt(x,t,m,a,d,u) << endl; }
t= t + dt;

}
//////////// Finish ///////////////////////////////// /////////////////////////
ofile.close();
return(0);

}

Figure 2.8: C++ source code of the advection-dispersion model (file: adModel.cpp).

2.6 Example: Monte-Carlo simulation 27

0 2000 4000 6000

0.
00

0.
05

0.
10

0.
15

t

c(
x,

t)

x= 500
x= 1500
x= 2500
x= 3500
x= 4500

Figure 2.6: Solutions of Eqn.2.2at a fixed set of river stations
for variable times.

0 1000 3000 5000

0.
00

0.
05

0.
10

0.
15

x

c(
x,

t)

t= 900
t= 1800
t= 2700
t= 3600

Figure 2.7: Solutions of Eqn.2.2 at a fixed set of times for
variable river stations.

u 0.5
d 50.
a 15.
m 5.
x 1000.
tmax 7200.
dt 120.

Figure 2.9: Sample input file for the model defined in
Fig. 2.8.

The command should create an executable ’ad-
Model’ (possibly with an appropriate file name exten-
sion).

To successfully run the model, two command line ar-
guments must be passed to the executable. The first
argument is the name of the input file containing all in-
put data, including the values of the parametersu andd.
The second command line argument is the name of the
output file containing the simulated concentrations. An
example of an appropriate input file is given in Fig.2.9.
The model expects to find the definition of a single input
value per line. Each line should start with a string, rep-
resenting the name of the input item, followed by one
or more blank characters, followed by the value. The
meaning of the valuesu, d, a, m, andx is clear from
Eqns.2.1and2.2. The two additional values define the
array of times of interest.tmax defines the upper limit
of the simulation time (starting at zero) anddt specifies
the temporal resolution of the output. Both values are
in units of seconds. The value ofdt should be less than
tmax to produce (any) useful output.

2.6.3 Observed data

Eqn.2.2can be used to determine the average flow ve-
locity u and the longitudinal dispersion coefficientd
from tracer experiments. We assume that the set of ob-
servations given in Fig.2.10 was obtained in such an
experiment. In addition, we assume that

• The observations were made at river stationx=
1000 m while the injection took place atx=0.

• The river’s wet cross-section area isa= 15 m2.

• The known input mass of the tracer wasm= 5 g.

28 Chapter 2 R-package for model optimization (mops)

time conc
900 0.0001
1200 0.0002
1800 0.00032
3000 0.00015
3600 0.0001

Figure 2.10: Time series of observed concentrations (file: ob-
servations.txt).

u {u}
d {d}
a 15.
m 5.
x 1000.
tmax 7200.
dt 120.

Figure 2.11: Template parameter file with placeholders for
the values of the parametersu andd (cf. Fig.2.9).

2.6.4 Monte-Carlo experiment

Preparation of template file(s)

The first step of setting up a Monte-Carlo simulation is
the preparation of parameter template files. Since our
model (Fig.2.8) reads all data from a single file, we
have to prepare a single template file only. To do so,
we simply take the sample file from Fig.2.9and substi-
tute the values of the parameters of interest by appropri-
ate placeholders. Using curly braces as the designated
characters for placeholders, an appropriate template file
could look as in Fig.2.11. In this example, the place-
holders are named like the parameters. This is not a
must but a simple and useful convention.

Writing a driver script in R

The next step is to write an R script to call the
run_mcs method from themops package with appro-
priate arguments. For our example, such a driver script
is shown in Fig.2.12. The R script has been structured
into several parts using comment lines. The subsequent
paragraphs provide some details on the contents and
meaning of these parts.

PART 0 This part accounts for initial actions. It clears
R’s memory of variables, loads themops package, and

sets the working directory. When using a copy of the
code, the working directory needs to be adjusted to the
local settings.

PART 1 In this part, the names of all files are defined
which are created in part 3 of the script. This includes
the model’s input file (which is generated from a tem-
plate) and the model’s output file. It may be convenient
to use temporary file and folder names.

PART 2 In this part, two tables are created (as
data.frame objects). The first table defines the sam-
pling ranges of the parameters and is passed as ar-
gumentranges_table to themcs_run method in
part 3. The second table holds information required
for the automatic editing of the model’s input files.
It is passed as argumentupdating_table to the
mcs_run method in part 3. In this example, the ta-
ble consists of a single row because only a single file
needs to be updated.

In the case of models with a larger number of param-
eters or multiple input files that need to be updated, is is
better style to put the contents of the two table(s) in text
file(s). Then, one can use R’sread.tablemethod to
read the data and instantiate thedata.frame objects.

PART 3 This part contains the call to therun_mcs
method. Information on all arguments can be found in
themops package’s help files. Some additional hints
related to the more complex arguments are given below:

• In this example, it is assumed that the file name
of the model executable is ’adModel’ and that
the file resides in the working directory (argument
model_path). The actual name depends on the
output created by compiling the source code from
Fig. 2.8.

• The model executable expects twounnamedcom-
mand line arguments (see code in Fig.2.8). The
two expected file names are supplied in anun-
namedvector to the argumentmodel_args.

• In this example, it is assumed that the observed
data (Fig.2.10) reside in a file named ’observa-
tions.txt’ (argumentobs_file). Furthermore, it
is assumed that this is a TAB-separated file with
the time in column ’time’ and the observed values
in column ’conc’.

2.7 Usingmops with an echse-based model 29

0.5 1.0 1.5 2.00.
00

00
0

0.
00

01
5

0.
00

03
0

rm
se

u

50 100 150 2000.
00

00
0

0.
00

01
5

0.
00

03
0

rm
se

d

Figure 2.13: Output graphics created by the R code from
Fig. 2.12.

• The functions assigned to the arguments
sim_timeConv and obs_timeConv are
identical. They convert a numical time into a
value of R’sPOSIXct class. Here, the numerical
time is the number of seconds after tracer injection
(see Fig.2.10 and the source code in Fig.2.8).
It does not matter which base time is used (here
1970-01-01 00:00:00) as long as it is identical for
the observed and simulated time series.

• The value of the function assigned to argument
gof_function is returned as anamedvector.
Using a named vector has the advantage that this
name appears in the result file.

PART 4 This final part callsmcs_eval to analyze
and visualize the result of the Monte-Carlo experiment.
For each parameter included in the experiment, a the
marginal distribution of the model error is plotted in
a separate sub-figure (see examples in Figs.2.13 and
2.14). These plots are also known as ’dotty plots’.

Inspecting the output

The graphical output from the R code (Fig.2.12) is pre-
sented in Fig.2.13. In this example with only two pa-
rameters (u andd), some structure is visible in the plots
of the marginal distributions. From the left sub-figure,
one may conclude that a parameter value ofu ≈ 0.5 fits
best with the observation data. The right sub-figure of
Fig. 2.13suggest that reasonable values for the disper-
sion coefficientd are probably found in a range between
10 and 70. In order to refine the estimate, one could try
different options:

1. Re-run the Monte-Carlo experiment with narrower
sampling ranges. For example, the sampling range
for parameterd could be restricted to 0. . . 100.

0.35 0.45 0.55 0.650.
00

00
0

0.
00

01
0

0.
00

02
0

rm
se

u

20 40 60 800.
00

00
0

0.
00

01
0

0.
00

02
0

rm
se

d

Figure 2.14: Output graphics created by the R code from
Fig. 2.12 after narrowing of the sampling ranges (u in 0.35
. . . 0.65;d in 10 . . . 100).

This option was already discussed in Sec.2.4.4.
The result of such a re-run with narrowed sampling
ranges is presented in Fig.2.14.

2. Re-run the Monte-Carlo experiment with a higher
number of random samples.

3. Use the current estimates ofu = 0.5 andd = 50
as initial values for one of the true optimization
algorithms provided by R’soptim method.

2.7 Using mops with an echse-
based model

This section contains some practical hints for
the use of mops together with an echse-
based model. The hints refer in particular to
the methods modelError_multiDim and
modelError_oneDim which have many argu-
ments in common.

Command line arguments An echse-based model
generally expects some mandatory command line argu-
ments of the form ’key=value’ (seeKneis, 2012a, for
details). All optional command line arguments (con-
figuration data) are of the ’key=value’ form as well.
Therefore, the value assigned to the method’s argument
model_argsmust always be anamedvector. A min-
imum exaple, covering only the mandatory command
line arguments is given in Fig.2.15.

Clean-up functions An echse-based model never
overwrites existing files. Therefore, when carrying out
a series of model runs, there must be a mechanism to

30 Chapter 2 R-package for model optimization (mops)

############ PART 0 ################################## ##########################
rm(list=ls())
library("mops")

Set working direcory (A D J U S T T O Y O U R S E T T I N G S !)
setwd("~/progress/echse/echse_doc/tex/tools/current/chapters/mops/fig/mcs_example")

############ PART 1 ################################## ##########################
Define variables for folders and files
dir_run= paste(tempdir(),"run",sep="/") # Output of current run
dir_mcs= paste(tempdir(),"mcs",sep="/") # Output of MCS
if (!file.exists(dir_run)) dir.create(dir_run)
if (!file.exists(dir_mcs)) dir.create(dir_mcs)

ifile= paste(dir_run,"input.txt",sep="/") # Model input (generated from template)
ofile= paste(dir_run,"output.txt",sep="/") # Output file of the model

############ PART 2 ################################## ##########################
Table with sampling ranges for the parameters
rangeTbl= data.frame(parameter= c("u", "d"), min= c(0.1, 10), max= c(2.0, 200))

Table defining the files to be edited automatically
updateTbl= data.frame(file_template=c("in_template.txt"), file_result=c(ifile))

############ PART 3 ################################## ##########################
Call to the Monte-Carlo method from package mops
mcs_run(

ranges_table= rangeTbl,
nSamples= 500,
updating_table= updateTbl,
model_path= "./adModel", # on Linux, the "./" is required
model_args= c(ifile, ofile),
outdir_model= dir_run,
outdir_mcs= dir_mcs,
silent=FALSE

)

############ PART 4 ################################## ##########################
Analyze the results of all model runs and create useful grap hics
mcs_eval(

outdir_mcs= dir_mcs,
obs_files= c(all="observations.txt"),
obs_colsTime= "time",
obs_colsValue= "conc",
obs_colsep="\t",
obs_timeConv= function(x) { ISOdatetime(1970,1,1,0,0,0) + x },
sim_file= basename(ofile),
sim_colTime= "t",
sim_colValue= "c",
sim_colsep="\t",
sim_timeConv= function(x) { ISOdatetime(1970,1,1,0,0,0) + x },
obs_nodata= -9999,
periods= data.frame(begin=c(), end=c()),
gof_function= function(obs,sim) { c(rmse= sqrt(mean((sim-obs)^2))) },
showStats=TRUE

)

print(paste("Outputs, incl. a PDF with graphics, are in ’",dir_mcs,"’.",sep=""))

Figure 2.12: R code to run the Monte-Carlo experiment using themops package.

2.8 Troubleshooting 31

model_args= c(file_control="myModel.cnf",
file_log="myModel.log",
file_err="errors.html",
format_err="html", silent="true")

Figure 2.15: Example, demonstrating the use of the
model_args argument.

delete the output created by the previous run. By assign-
ing a proper function to the argumentsfunc_first
and an appropriate value tomoreArgs_first such
an automatic clean-up may be accomplished. Alterna-
tively, the clean-up may be done right after a model run,
by supplying an appropriate function forfunc_final
and value formoreArgs_final.

In some cases, a complete removal of the model out-
puts after each run may be undesired. For example, one
might be interested in the actual time series output pro-
duced by the individual runs of a Monte-Carlo simula-
tion. Then, renaming is usually an appropriate alterna-
tive to deletion of files. This can be done, for example,
by supplying appropriate code asfunc_final and a
suitable value formoreArgs_final. In those cases,
it is often convenient to use a string representation of the
system’s time for the generation of unique file names.

Files created by the model Output files created by
anechse-based model conform to some simple stan-
dards which facilitates the use ofmops. In all time se-
ries output files, the column with time information is
named ’end_of_interval’. Thus, this is the string to be
assigned to the argumentsim_colTime (Fig. 2.16).
Furthermore, the time information printed byechse-
based models is always in ISO 8601 format (YYYY-
MM-DD hh:mm:ss) with date and time separated by
a single blank character. This is also the default for-
mat used bymops. Therefore, the actual argument for
sim_timeConv can be omitted in the call to meth-
ods likemodelError_MCS. If, even though, a time-
conversion function is specified it should be defined as
in Fig. 2.16.

2.8 Troubleshooting

2.8.1 General recommendations

The methods contained in themops package perform
quite complex tasks and there is a high potential for

sim_colTime= "end_of_interval"
sim_timeConv= function(x) {

as.POSIXct(strptime(x,
"%Y-%m-%d %H:%M:%S",tz="GMT"),
tz="GMT")
}

Figure 2.16: Appropriate values of the arguments
sim_colTime and sim_timeConv when usingmops’s
methods with anechse-based model.

making mistakes. In many cases, the cause of failure
should be obvious from the generated error messages.
However, there are situations where it may be difficult
to locate and identify the actual problem. Therefore,
some general guidelines for troubleshooting are given
in this section. More specific problems are addressed in
Sec.2.8.2.

If one ofmops’s high-level methods involving a call
to a simulation model fails, one should first try to find
out at which step of the computation the problem oc-
curred. There are four possible categories a–d with typ-
ical symptoms:

(a) Stop occurs prior to running the model

• The model does neither produce the desired output
nor any other files (log files, files with error mes-
sages, etc.).

• A return code of the model isnot reported.

(b) Stop occurs when calling the model

• As in case (a), the model does not produce any out-
put files.

• A non-zeroreturn code of the modelis reported.

(c) Stop occurs while running the model

• The model produces a file with error messages
and/or a log file whose entries indicate early ter-
mination.

• A non-zeroreturn code of the modelis reported.

(d) Stop occurs after running the model

• The model produces the desired output files and
possibly a complete log file.

32 Chapter 2 R-package for model optimization (mops)

• A return code of the model isnot reported.

Note that (b) is a quite common case. It typically
occurs if the model is called with invalid or incom-
plete command line arguments. In case ofechse-
based models, it may happen that the model executable
is called successfully but the names of the files for log
info and diagnostic messages are not properly passed
via the command line. Consequently, the model ter-
minates without creating any log or error output. The
non-zero return level is the only sign of failure then.

2.8.2 Specific recommendations

The model does not run at all

• Check the path to the executable if a relative or
absolute path was specified.

• If the executable is called just by its name but the
file does not reside in R’s working directory, you
might need to check/adjust your ’PATH’ environ-
ment variable.

• Check for broken links (if a link is used).

• Check whether the file is actually executable.

The command line is not passed to the model

• Try to call the executable directly, i. e. not via an
intermediate shell script and not using a link. This
is best done by adding the directory containing the
executable to the ’PATH’ variable.

• If this does not help, replace the executable by a
shell script that reports its full command line but
does nothing else. Try to learn from this.

The model crashes due to floating point exceptions

In true optimization as well as in Monte-Carlo simula-
tion, the simulation model is run with many different
parameter sets. In general, the tested parameter sets are
chosen by the used algorithm, based on sophisticated
rules or simply by random sampling. Thus, the particu-
lar sets are not know a-priori.

In many models, the values of different parameters
are not totally independent. For example, if a fictive pa-
rameter ’maximumCapacity’ has a value of 5, it does
not make sense if a companion parameter ’minimum-
Capacity’ has a value greater than 5. Similarly, some

parameter values may be incompatible with the initial
value(s) of state variable(s). If, for example, the fictive
parameter ’minTemperature’ has a value of 5, problems
are waiting to happen if a related state variable ’temper-
ature’ is initialized to a value of 0.

The consequences are as follows:

• When using one ofmops’s methods together with
a true optimization algorithm, it may be neces-
sary to set box-constraints for critical parameters.
Similarly, when doing Monte-Carlo simulations
with the modelError_MCS method, the sam-
pling ranges must be chosen with care in order
not to produce invalid (e. g. unphysical) parameter
combinations.

• The initial values for the state variables must be
chosen so as to be compatible with any parameter
sets possibly tested during optimization or Monte-
Carlo simulation, respectively.

Disregard of this often causes a model to crash due
to floating point exceptions. In other cases, the model
only produces implausible outputs (which are hopefully
detected because of a bad fit).

Chapter 3

Filling of gaps in meteorological time
series (meteofill)

3.1 Purpose

For hydrological modeling, time series of meteorologi-
cal variables are required. Besides rainfall, this usually
includes variables like temperature, radiation, humidity,
windspeed, and possibly air pressure. The time series
of meteorological observations often containg some (or
many) missing values due to failure of sensors, power
blackout, errors in transmission and recording of data
and various other causes.

Internally, all hydrological models require continu-
ous (i. e. gap-free) time series of the meteorological
forcing variables. This requirement can be fulfilled in
two different ways. In the first strategy (Fig.3.1, left)
the model reads the incomplete series and must fill the
gaps internally. The second strategy (Fig.3.1, right)
uses an external pre-processor to complete the informa-
tion before calling the model.

The second approach has a number of advantages
listed below:

• Models are often run many times using the same
input data set (for example in calibration or uncer-
tainty analysis). It would be a massive waste of
computer time to repeatedly pre-process the time
series input in every single run.

• Separating the time series pre-processor from the
actual model makes the software more modular
which is advantageous in terms of re-use and
maintenance.

meteofill is designed for the second approach
(Fig. 3.1, right). It is a pre-processor to produce gap-
free time series from observation data.

Figure 3.1: Alternative strategies to handle gaps a model’s
input time series.

33

34 Chapter 3 Filling of gaps in meteorological time series (meteofill)

The methodology used bymeteofill is built on a
space-for-time trade approach (see Sec.3.2). It requires
that observation data are available formultiple stations.
Usingmeteofill to fill gaps in a time series of ob-
servations at a single location is technically possible but
it is likely to give poor result (see details in Sec.3.2.1).

Note that, forspatially distributedmodels, there are
now two separate steps of spatial interpolation. In the
first step,meteofill is uses spatial interpolation to
remove any gaps in the model’s multi-location input
time series. In the second step, typically called region-
alization, the pre-processed multi-location data are then
interpolated to the spatially distributed model objects.

This second interpolation step is typically fully in-
dependent ofmeteofill and may be carried out, for
example, by the simulation model, or any geostatistical
software.

It is also possible, however, to usemeteofill to
combine the two steps of spatial interpolation men-
tioned above. This is illustrated in Fig.3.2.

In the left branch of Fig.3.2, meteofill is used to
fill the gaps in time series of actual observations made
at real-world stations. The distributed model reads the
pre-processed time series and performs the regionaliza-
tion to the model objects internally. In this approach,
the model reads a rather small amount of data from files
which is efficient with respect to computation time and
disk space. User’s ofechse-based models propably
always want to use this approach.

The alternative is shown in the right branch of
Fig. 3.2, wheremeteofill is used as an all-in-one
interpolation tool. This is practically achieved by con-
sidering the locations of the model objects as ’normal’
observation sitesthat never recorded any data. This
kind of usage may be problematic for models with many
spatially distributed objects, in particular if longer time
series are processed. The produced files may become
extremely large, which may result in a massive slow-
down of model performance and disk operations in gen-
eral. Thus, the use ofmeteofill as an all-in-one in-
terpolation tool is recommended in special cases only
(small models, few time steps; see example in Fig.3.6).

3.2 Methods

3.2.1 Filling of gaps

The approach taken bymeteofill is best explained
with an example (Fig.3.3). In order to substitute a

Figure 3.3: Example of a multi-location times series of a
meteorological variable with valid (squares) and missing data
values (crosses).

missing data value (cross) by a reasonable estimate, one
could, in theory:

1. interpolate in time. For example, the missing value
at location 3 in time step 4 could be substituted by
interpolating between the values at the same loca-
tion in time steps 3 and 5.

2. assume persistence. For example, the missing
value at location 3 in time step 4 could simply
be substituted by the value from the previous time
step (step 3, same location). This is actually a spe-
cial case of interpolation in time, where the previ-
ous and next value are weighted with factors of 1
and 0, respectively.

3. interpolate in space. For example, the missing val-
ues at locations 2 and 4 in time step 2 could be es-
timated by spatially interpolating the values from
the remaining locations 1, 2, and 5 observed at the
same time step.

4. combine the ideas of spatial and temporal interpo-
lation.

The current version ofmeteofill primarily re-
lies onspatialinterpolation, rather than interpolation in
time. This can be summarizes by the following simple
rules:

• If, in a time step, a value is available atn ≥ 1
location(s), missing data at the otherm locations

3.2 Methods 35

Figure 3.2: Possible strategies of preparing the time series input of a spatially distributed model usingmeteofill. Whenever
possible, the left branch should be preffered for performance reasons.

are estimated by spatial interpolation (see Sec-
tions 3.2.2and3.2.3for details). In the simplest
case withn = 1, the single observation is assumed
to be valid globally.

• If, in a time step, no data are available at any lo-
cation, persistence is assumed. Thus, for each lo-
cation, the value (or estimate1) from the previous
time step is used (see Sec.3.6.1for practical ad-
vices).

After filling the gaps at all station in a time stepj,
the computation proceeds with time stepj + 1. This
algorithm obviously requires that, in the very first time
step, there is at least one location with a non-missing
value.

3.2.2 Inverse-distance approach

The inverse-distance method (Eqn.3.1) is used to per-
form the spatial interpolation. It is a robust and compu-
tationally cheap method. To a limited extent, the spa-
tial autocorrelation of the interpolated variable can be

1If data are missing for a number of subsequent time steps

taken into account by adjustment of the exponentp in
Eqn.3.1.

yk =

∑n
i=1

(yi · d(i, k)−p)
∑n

i=1
(d(i, k)−p)

(3.1)

with
yk Value at the target location (indexk).

yi Value at source location with indexi.

d(i, k) Distance between locations with in-
dicesi andk.

p Parameter (typically set to 2).

For a particular target location (indexk in Eqn.3.1),
the set of appropriate source locations (indices1
throughn in Eqn.3.1) is found by a sector search. Thus,
the surrounding area of the locationk is dub-divided
into a number of sectors and only the nearest source lo-
cation is picked from each sector. This is illustrated in
Fig. 3.4.

Given a fixed number of sectors, the selection of
the source location obviously depends on the orien-
tation of the sectors. To achieve an optimum result,
meteofill allows for testing different orientations by
rotating the sectors (Fig.3.5). From the tested orienta-
tions,meteofill uses the one where the cumulated

36 Chapter 3 Filling of gaps in meteorological time series (meteofill)

Figure 3.4: Example of a sector search in spatial interpola-
tion. From each of the four sectors, only the nearest station
(1,2,3) is used in estimating the variable at the target location
(T). Values at the crossed locations are neglected.

Figure 3.5: Example of sector rotation. This example used a
number of four sectors with 3 different orientations.

distance between the target and the source locations is
minimal.

The selection of the appropriate source locations is
the computationally most demanding step. This is es-
pecially so if both the number of target and source lo-
cations is large. Therefore,meteofill carries out a
search for the source locations only

• at the very beginning of the computation (first time
step).

• if the set of locations with missing data has
changed from the previous to the current time step.

3.2.3 Residual interpolation

The result of spatial interpolation can often be improved
by using additional predictor variable(s). Values of
these valiable(s) must be known at all source and tar-
get locations. For example, elevation my be a useful
additional predictor when interpolating air pressure or
temperature data. Two prominent approaches to spatial
interpolation with additional predictors are (1) external
drift Kriging and (2) residual interpolation.
meteofill supports the latter approach with the

following settings/restrictions:

• Only asinglepredictor variable is supported.

• A linear relation between the predictor and the in-
terpolated variable is assumed.

• Theadditiveapproach is used (not the alternative,
multiplicative approach).

The basic algorithm of additive, uni-variate inverse-
distance residual interpolation is summarized in
Eqns.3.2to 3.4

yk =Ek +

∑n
i=1

(Ri · d(i, k)−p)
∑n

i=1
(d(i, k)−p)

(3.2)

Ej =a · zj + b (3.3)

Ri =yi − Ei (3.4)

with the additional symbols (cf. Eqn.3.1)
Ej Estimate of variabley at an arbitrary

locationj obtained from a linear model
with the external predictor variablez
and empirical coefficientsa andb.

Ri Residual at a source location with in-
dexi.

The coefficients of the linear model (Eqn.3.3) are
updated in every single time step. This is done using
the data from all source locations (i. e. all locations
with valid data).

The linear correlation between the interpolated vari-
abley and the additional predictor variablez may be
more or less strong. In particular, the sign and quality
of the correlation may be variable in time. Therefore,
meteofill accepts a user-specified quality threshold,
representing a minimumR2. If the value ofR2 for
the linear model (Eqn.3.3) is equal or greater than the
user-specified threshold, residual interpolation is used
(Eqns.3.2 to 3.4). Otherwise, in the case of a weak
correlation, the plain inverse-distance method is applied
(Eqn.3.1). The same is true if the number of data pairs
for estimation of the linear model is lower than a user
specified minimum sample size.

Residual interpolation isneverused if the threshold
for R2 is set to a value > 1 or if the minimum sample
size is set to a value greater than the total number of
locations.

In some cases, use of the linear model may result in
undesired extrapolation effects. This is especially so, if

3.3 Arguments and invocation ofmeteofill 37

• the range of possible values of the interpolated
variable is limited. Example: Precipitation inten-
sity cannot be negative.

• the value of the predictor variablez at a target lo-
cation is outside the range ofz values at the source
locations. Example: Data are missing for a loca-
tion at sea level and all available data correspond
to elevations of 500–5000 meters.

In order to suppress such undesired results,
meteofill allows for data truncation. The result val-
ues of residual interpolation are truncated if they are
outside a user-specified range.

An example, illustrating the effect of residual inter-
polation in comparison with plain inverse-distance in-
terpolation is shown in Fig.3.6.

3.3 Arguments and invocation of
meteofill

meteofill is an application written in C++. It ex-
pects all input to be supplied as command line argu-
ments. All arguments must be supplied in a keyword-
values style as in the following example call:

meteofill ifile_locations="locations.txt"
ifile_data="data_withGaps.txt"
chars_colsep=" " chars_comment="#"
nodata=-99. idw_power=2
nsectors=4 norigins=3
resid_nmin=3 resid_r2min=0.36
resid_llim=-40. resid_ulim=40.
ofile_data="data_filled.txt"
ofile_locations="locations.txt"
ndigits_max=1 logfile="log.txt"
overwrite=true

The meaning of the various keywords is as follows:

ifile_locations (string) Input file listing the
spatial coordinates for all locations. See Sec.3.4.1
for details.

ifile_data (string) Input file with multi-location
time series data. See Sec.3.4.2for details.

chars_colsep (character(s)) One or more charac-
ter(s) used as a column-separator. Should be
quoted, if a special character like TAB (ASCII
code 9) is used. Any of the characters (if more
than one) is treated as a column separator when

reading input files. The columns of output files are
separated by the first (or only) character in the set.
Typically, a TAB character (enclosed by quotes) is
used as in the above example.

chars_comment (character) Initial character of
comment lines in input files (typically the hash
character). Should be quoted.

nodata (numeric) Value to indicate a missing value
in the input time series. Typically, large negative
values like -99 or -9999 are used for the common
meteorological variables.

idw_power (numeric) Value of parameterp in
Eqn. 3.1. Typically a value of 1 or 2. The opti-
mum value may be determined by cross-validation
or variogram analysis.

nsectors (integer) Number of sectors to be used in
the search of source locations (see Fig.3.4). Using
nsectors=1 forces a nearest-neighbor interpo-
lation. You probably want to use a value between
3 and 8 (or 1).

norigins (integer) The number of sector origins
(sector rotations) to be tested. See Sec.3.2.2
(Fig. 3.5). You probably want to use a value be-
tween 1 and 5. Larger values should give better
results at the expense of an increase in computa-
tion time.

resid_nmin (integer) Minimum number of loca-
tions with valid data (source locations) for pos-
sibly activation of residual interpolation. If the
actual number of source locations is less than
resid_nmin, residual interpolation isnot used.
Otherwise, the decision depends on the quality of
the linear correlation (seeresid_r2min). Rea-
sonable values forresid_nmin are probably≥
3.

resid_r2min (numeric) Minimum R2 of the lin-
ear model used in residual interpolation (see
Sec.3.2.3). For actual activation of residual in-
terpolation, the computedR2 for the particular
time step must bege resid_r2min and, in
addition, the sample size must be large enough
(see resid_nmin). Reasonable values for
resid_r2min are probably≥ 0.36 (correlation
coefficient of 0.6).

38 Chapter 3 Filling of gaps in meteorological time series (meteofill)

Figure 3.6: Effect of residual interpolation on the regionalization ofair temperature in a mountainous watershed. In this
example, the air temperature observed at climate stations is highly correlated to elevation. The stations (not shown) are located
outside the watershed in the North (low elevation, warm) andSouth-East (high elevation, cold). Left: Elevation model (red:
high, green: low) and river net (white). Center:meteofill output using the plain inverse-distance approach (blue: cold,
red: warm). Right:meteofill output using residual interpolation with elevation as additional predictor. Obviously, higher
temperatures are predicted in the valleys by taking the vertical temperature gradient into account.

resid_llim (numeric) Lower truncation limit in
case of residual interpolation (see Sec.3.2.3). For
variables that cannot take negative values (like pre-
cipitation or short-wave radiation),resid_llim
should be set to zero.

resid_ulim (numeric) Upper truncation limit in
case of residual interpolation (see Sec.3.2.3).

ofile_data (string) Name/path of the output file
containing the time series with all gaps filled ac-
cording to the method described in Sec.3.2.

ofile_locations (string) Name/path of the out-
put file containing a list of the locations from
ifile_locations for which data are actually
present inifile_data.

logfile (string) Name/path of an output log file.

ndigits_max (integer) Number of digits to be used
in the output fileofile_data.

overwrite (logical) A value of either true of false.
If true, any existing output files will silently be re-
placed.

After successful execution, the return code of
meteofill is zero. If the program terminates due to

an error, a non-zero code is returned and traceback info
is sent to standard output.

3.4 Input

3.4.1 Locations table

The locations table is a text file with four columns (see
Sec.3.3 for how to select a column separator). The ex-
pected column names areid, x, y, andz. Theid col-
umn contains the names of locations (usually climate
stations or rain gages), for which data are available. The
IDs are read as strings. The corresponding spatial co-
ordinates go in thex andy fields. For the coordinates
one should use ageodeticsystem (i. e. units of me-
ters, kilometers, miles, etc.). Thez field should contain
the values of the external predictor variable for residual
interpolation. Elevation is the natural choice if noth-
ing better is available. If residual interpolation should
not be used anyway, thez column may be filled with
dummy values.

An example of a locations table is given in Fig.3.7.
It is OK if the locations table contains more than

the mandatory columns.meteofill simply ignores
the unnecessary information. It is also OK if the loca-
tions table contains records for additional locations not

3.5 Output 39

id x y z
klotzsche 4623183 5667440 227
hosterwitz 4629789 5655359 114
strehlen 4623996 5652991 119
dipps_rein 4620226 5644000 365
zinnwald 4623539 5622933 877

Figure 3.7: Example of a locations table.

time MT.CMP. ARIES MT.ORO
2000-01-01 0 -99 0
2000-01-02 4 -99 1
2000-01-03 12 3 1
2000-01-04 -99 -99 -99
2000-01-05 0 -99 0

Figure 3.8: Example of multi-location time series file for use
with meteofill.

present in the time series input file (Sec.3.4.2). These
records are silently ignored as well.

3.4.2 Time series file

The time series input file is a text file withn+1 columns
wheren is the number of locations (see Sec.3.3for how
to select a column separator). The table must have a
header line with column names. The first column of the
file is expected to contain time information in ascend-
ing order (oldest record first). Any format can be used
asmeteofill internally treats the data as strings, not
as times. For this first column, an arbitrary name can
be chosen (but it must be present). The remainingn
columns contain the numeric observation data at then
locations. These columns may be in any order but their
names need to match exactly with the location IDs pro-
vided in the locations table (Sec.3.4.1). Any missing
or invalid data values must be indicated by thenodata
value (see Sec.3.3). An example of multi-location time
series file is given in Fig.3.8.

For the algorithm to be successful, it is important that
the very first (oldest) record contains valid data for one
location, at least.

3.5 Output

The current version ofmeteofill generates three
output files whose names are specified at the command
line (see Sec.3.3). The contents of the files is described
in Table3.1.

3.6 Hints for practical usage

3.6.1 Missing-only data (options beyond
persistence)

As pointed out in Sec.3.2.1,meteofill assumes per-
sistence if, in a particular time step, no data are available
for any station (let’s call this situation aglobal gap). Al-
though persistence is a simple and intuitive approach, it
is likely to give satisfactory results only as long as the
period of missing-only data is short enough. For long-
lasting global gaps, persistence may not be a suitable
assumption and it may be desireable to fill the gap with
predefined values. Possible candidates are monthly av-
erage values or, in the case of rainfall data, a fixed value
of zero.

Furtunately, there is a simple trick to let
meteofill fill such global gaps with predefined
values. All you need to do is to supplement the input
data with asyntheticstation that ’recorded’ the desired
fill-in values (which may vary in time). The spatial
coordinates of that synthetic station must be chosen
so that it isvery far away from all the actual stations
(e. g. some million kilometers). Hereby it is ensured
that the data from the synthetic station will practically
be ignored (i. e. weighted with almost zero), as long as
any of the actual stations provides valid data.

40 Chapter 3 Filling of gaps in meteorological time series (meteofill)

Table 3.1: Output files ofmeteofill. The entries in the ’File’ column refer to the command line arguments describe in
Sec.3.3.

File Contents

ofile_data A multi-location time series table. Format and contents areidentical to the input time
series Sec.3.4.2except that allnodata values are replaced by estimates according
to Sec.3.2.

ofile_locations Similar to the input locations table described in Sec.3.4.1. The table contains only the
mandatory columns and list only those stations for which time series data are actually
present.

logfile Lists, for each time step, the number of locations with validdata (as absolute number
in columnnumdata and as a percentage in columnavailability. The column
config_changed contains information on whether the set of locations with miss-
ing data has changed in comparison to the previous time step (requiring a new search
for neighbored locations). The columnsresidual_interp andr2 contain infor-
mation on the use of residual interpolation (true/false) and the correspondingR2 of
the linear model.

Chapter 4

River cross-section analysis
(xsAnalyzer)

4.1 Purpose

ThexsAnalyzer software computes basic hydraulic
properties of a river reach being described by

1. a representative cross-section geometry,

2. the hydraulic roughness (energy loss parameter),

3. the bed slope,

4. the reach length.

The computed results refer to a situation of steady
uniform flow. This means that (1) the flow rate is con-
stant in time, (2) the cross-section geometry does not
change along the reach, and (3) the slope of the water
surface is identical to the bed slope (no backwater).

ThexsAnalyzer tool can be used, for example, to

• calculate an approximate rating curves for un-
gaged sites at a river,

• estimate parameters to describe a reach’s retention
characteristics for use by hydrologic flood routing
methods.

Note that the R-packagetopocatch (see Chap.1)
contains methods to perform similar tasks. However,
as opposed toxsAnalyzer these methods are not ca-
pable of handling compound cross-sections, i. e. those
with a variable roughness (see Sec.4.2).

4.2 Methods

The most important input information of
xsAnalyzer is the cross-section geometry. Fig.4.1

Figure 4.1: A typical river cross-section.

shows a typical example with a distinction between the
main channel and the flood plains on either side of the
river.

The cross-sections’s geometry can be represented as
a two column table. One column specifies the offset
from a fixed point (typically at the left bank) and the
other column holds the corresponding elevations. From
such a table, the functionsA(D) and R(D) can in-
stantly be computed, whereD is the maximum flow
depth in the cross-section,A is cross-sections the wet
area, andR is the hydraulic radius (wet area divided by
the wet perimeter).

Using Manning’s equation (Eqn.4.1), the flow rate
for steady uniform conditionsQ can be calculated for
a given flow depthD if the slopeS and the roughness
parametern are known. The reverse computation aimed
at finding the value ofD for a givenQ is also possible
but requires a numerical solution.

Q(D) =
1

n
·
√
S ·A(D) ·R(D)2/3 (4.1)

For many real-world cross-sections, the use of a sin-
gle, unique roughness parametern is not appropriate.
This is often the case for cross-sections with flood
plains (Fig.4.1) because the actual surface roughness
is horizontally variable. For example, the flood plains

41

42 Chapter 4 River cross-section analysis (xsAnalyzer)

Figure 4.2: Turbulence due to shear at the interface of flow
zones.

may be covered by vegetation while the bed of the main
channel is made of sand or concrete. Then, energy
losses due to turbulence will be quite different in the
channel and the flood plains.

To handle this situation,xsAnalyzer uses the idea
of compound cross-sections (seeCunge et al., 1980).
Thus, the cross-section is horizontally sub-divided into
separate zones. To each zone, a unique value ofn is
applied when using Eqn.4.1. In the case shown in
Fig. 4.1, for example, the flow rate would be computed
in two steps. First, the individual flow rates of the main
channel and the two flood plains would be calculated,
before the three values are added up in a second step.

It is important to keep in mind that this approach al-
lows for different flow velocities in the zones. In real-
ity, this would lead to additional turbulence and, conse-
quently, result in additional energy losses due to shear
at the zones’ interface (Fig.4.2). Such losses, however,
are difficult to estimate and they aretotally neglectedby
xsAnalyzer.

If xsAnalyzer detects a water surface elevation
which is higher than the cross-section’s elevation at the
first and/or last offset, it assumes a vertical wall at the
respective offset. The output file (Sec.4.5) contains a
field to detect those critical situations.

4.3 Arguments and invocation of
xsAnalyzer

xsAnalyzer is an application written in C++. It ex-
pects all input to be supplied as command line argu-
ments. All arguments must be supplied in a keyword-
values style as in the following example call:

xsAnalyzer file_xsection="geometry.txt"
file_flows="flowsOfInterest.txt"
file_out="output.txt"
read_3d=false
read_roughness=false
default_roughness=30

slope=0.000485
plain_length=1000.
max_nreserv_kalmil=100
print_only_routing=false

The meaning of the various keywords is as follows:

file_xsection (string) Input file with cross-
section geometry data. See Sec.4.4.1for details.

file_flows (string) Input file listing flow rates of
interest. See Sec.4.4.2for details.

file_out (string) File name/path for output.

read_3d (logical) Must be FALSE if the geometry
data are given as a table of corresponding offsets
and elevations. Must beTRUE if the geometry data
are available as 3-dimensional coordinates.

read_roughness (logical) Must beTRUE if the ta-
ble with geometry data contains an additional col-
umn with roughness values. Note that the rough-
ness must be specified as Strickler’sKst param-
eter which is the inverse of Manning’sn (Kst =
1/n). If FALSE, a unique roughness value is as-
sumed (see next argument).

default_roughness (numeric) The unique value
of the roughness parameter to be used if no val-
ues are specified in the geometry file. Note that
the roughness must be specified as Strickler’sKst
parameter which is the inverse of Manning’sn
(Kst = 1/n).

slope (numeric) Slope of the river bed as a dimen-
sionless number (i. e. meters elevation per meters
distance).

plain_length (numeric) Length of the reach as a
horizontal distance. For typical values of the slope,
this is almost identical to the actual length of the
reach.

max_nreserv_kalmil (integer) A parameter to
control the output. It specifies the maximum num-
ber of conceptual linear reservoirs for the Kalinin-
Miljukov routing method.

print_only_routing (logical) A switch to op-
tionally reduce the amount of output information.

After successful execution, the return code of
xsAnalyzer is zero. If the program terminates due
to an error, a non-zero code is returned and traceback
info is sent to standard output.

4.4 Input 43

offset z
-100 20
0 20
5 15
25 15
30 20
100 20

Figure 4.3: Example of geometry file in 2D format without
roughness information.

offset z Kst
-100 20 20
0 20 30
5 15 30
25 15 30
30 20 20
100 20 20

Figure 4.4: Example of geometry file in 2D format with spec-
ified roughness.

4.4 Input

4.4.1 Geometry data

The file holding the geometry data must be in tabular
format with columns separated by the TAB character
(ASCII character code 9). Lines with an initial# char-
acter are treated as comment lines. A header line with
column names is mandatory. See the examples below
for the expected column names.

Figs. 4.3 – 4.6 illustrate the four different possible
file formats for geometry data. If the data are given in
2-dimensional format, the offsets must be in increasing
order.

Note that, of roughness information is present, the
value for a particuar offset applies to the part of the
cross-section between this offset and the following
offset. Thus, the roughness information of the very
last record is effectively ignored (but a value must be
present).

4.4.2 Flow values of interest

The flow data are read from a plain text file like the one
in Fig. 4.7. This is effectively a single-column table. A
header must not be present. The user is free to specify a

x y z
-100 0 20
0 0 20
5 0 15
25 0 15
30 0 20
100 0 20

Figure 4.5: Example of geometry file in 3D format without
roughness information.

x y z Kst
-100 0 20 20
0 0 20 30
5 0 15 30
25 0 15 30
30 0 20 20
100 0 20 20

Figure 4.6: Example of geometry file in 3D format with spec-
ified roughness.

list of flow values with arbitrary increments but the data
must be in increasing order.

4.4.3 Units

Note that the units of all input data need to be consis-
tent. If, for example, the offsets are given in meters, the
elevation data must be provided in units of meters too.
At the same time, flow rates must be given in units of
m3 per second.

0.1
1
2
5
10
50
100

Figure 4.7: Example of file with flow data for use with
xsAnalyzer.

44
C

ha
pt

er
4

R
iv

er
cr

os
s-

se
ct

io
n

an
al

ys
is

(x
s
A
n
a
l
y
z
e
r

)

Cross-section property table
X-section data file: in/montalban/geometry_constRough .txt
Flow data file: in/montalban/flowsOfInterest.txt
Used reach length: 1000
Used slope: 0.000485
Used roughness: 30 (Global default)
flow stage overtop wet_area top_width wet_perimeter volume_total dvdq_total nsub volume_sub dvdq_sub
0.5 19.74 0 1.71 5.6 5.79 1707.2 2231.8 3 569.1 743.9
1 19.92 0 2.82 6.94 7.19 2823.1 2111.8 2 1411.6 1055.9
2 20.16 0 4.69 8.74 9.07 4694.9 1915.7 1 4694.9 1915.7
5 20.64 0 10.84 18.02 18.57 10836.9 1932.4 1 10836.9 1932.4
10 21.02 0 19.54 27.94 28.67 19541.2 1553.4 1 19541.2 1553.4
20 21.41 0 31.33 32.13 32.98 31326.8 1175.3 1 31326.8 1175.3
30 21.75 0 43.05 38.84 39.73 43046.2 1310.8 1 43046.2 1310.8
50 22.33 0 74.82 72.4 73.55 74819.0 1302.6 1 74819.0 1302.6
75 22.64 0 98.45 78.1 79.51 98446.4 849.8 1 98446.4 849.8
100 22.88 0 117.31 78.32 80.04 117309.9 727.7 1 117309.9 727.7

Figure 4.8: Example of an output file produced byxsAnalyzer.

4.5 Output 45

4.5 Output

The current version ofxsAnalyzer generates a single
output file containing a summary of the properties of the
cross-section / reach. An example is shown in Fig.4.8.

The meaning of the columns is as follows:

flow Flow rates of interest as specified in the input
file.

stage Water surface elevations corresponding to the
flow rates of interest.

overtop Either 0 or 1. A value of 1 means that the
water surface elevation is higher than the cross-
sections elevation at the first and/or last offset. In
that case, a vertical wall was assumed as a bound-
ary.

wet_area Wet cross-section area.

top_width Cross-section top width.

wet_perimeter Wetted perimeter.

volume_total Total storage volume of the reach.

dvdq_total Estimated derivative of the storage vol-
ume with respect to the flow rate.

nsub Suggested number of linear reservoirs (= length
of cascade) for Kalinin-Miljukov routing.

volume_sub Storage volume in the individual reser-
voirs for Kalinin-Miljukov routing.

dvdq_sub Estimated derivative of the storage vol-
ume with respect to the flow rate for the individual
reservoirs for Kalinin-Miljukov routing.

46 Chapter 4 River cross-section analysis (xsAnalyzer)

Chapter 5

Time series visualization tool (tsplot)

5.1 Purpose

tsplot is a lightweight tool for the interactive visual-
ization of time series data. It offers a convenient way to
quickly inspect the output of anechse-based simula-
tion model. It is particularly useful for showing simu-
lated and observed data in a single plot for the purpose
of comparison (see Fig.5.1). Note thattsplot is opti-
mized for interactive plotting only. If you need to create
plots for presentation in a paper, for example, you better
use R commands or another software.

5.2 Required software

tsplot is implemented as an R script. Thus, to use
it, a current version of R must be installed. SeeKneis
(2012b) for information on how to install R. In order to
invoketsplot via a bash shell script under Windows,
MSYS is required (seeKneis, 2012b).

5.3 Instructions files

The source(s) of the data to be plotted withtsplot
and the corresponding styles are defined in instructions
files. For every individual plot, one needs to create such
a file. At a first glance, this may seem inconvenient.
However, putting the instructions into a file allows for
re-drawing a particular plot with only a single mouse
click. In modeling studies – and in particular during
model calibration, when the data change frequently –
this is of great advantage.

Instruction files are plain text files containing data in
a tabular format. The columns must be separated by
white spaces (one or more spaces of tab characters).

Each line of the file (row in the table) defines a time
series to be plotted.

The instructions file must contain a table header with
a complete set of column names (in any order). The
meaning of the columns is as follows:

file (string) Name of a text file containing time se-
ries data in the format described in Sec.5.4. Ab-
solute or relative paths can be used. On Windows
systems, it is important that the forward slash (/)
is used to separate the names of directories, instead
of the usual backslash (\).

colname (string) Name of a column existing in the
data file specified infile. The values in this col-
umn are taken as the y-values. If the data file has
no header, i. e. no column names, one has to sup-
ply the index of the column rather than a name.
The smallest useful index is 2 (see Sec.5.4).

color (string) Name of an existing color in R (ex-
amples: red or lightblue). Call the function
colors() from an R prompt to display a
(lengthy) list of all pre-defined color names.

type (string) This defines the style used for plotting.
Using ’p’ (for points) and ’l’ (for lines) is appropri-
ate for instantaneous data. For regular time series,
where the values represent averages (or sums) over
a intervals of time, you should ’S’ or ’s’, depend-
ing on whether the given times specify the begin
(’s’) or the end (’S’) of an interval. The output
time series produced byechsemodels use the lat-
ter convention, thus you should use ’S’. Note that
using ’p’ may slow down the creation of plots sig-
nificantly if the time series contain many values.
In such cases, use one of the other options as an
alternative.

47

48 Chapter 5 Time series visualization tool (tsplot)

Figure 5.1: Screen shot of atsplot application.

name (string) A name for the series to appear in the
legend.

header (logical) Must be a logical value (TRUE or
FALSE in uppercase letters). If TRUE,tsplot
expects the data file to contain a header with col-
umn names.

comment (string) A single character to be treated as
a comment character in the data file. Quite often,
the hash character (#) is used for this purpose.

nodata (string) The value used in the data file to in-
dicate missing values. Typical examples include
’NA’ or ’-9999’. The corresponding rows of the
data file are ignored when creating the plot.

factor (numeric) A factor to be applied to the data
before plotting. A value other that 1 may be use-
ful to re-scale data when plotting multiple series
whose values are of different magnitude.

xcut (logical) Must be a logical value (TRUE or
FALSE in uppercase letters). If TRUE, the x-axis
is truncated to the range of times contained in the
data file. When plotting multiple series, a value of
TRUE should not appear in more than 1 row of the
instructions file.

An example of an instructions file is given in Fig.5.2.
If you need to put comment lines in the instructions file,
use a semicolon as the first character of the line. The
line will then be ignored bytsplot (see example in
Fig. 5.2).

5.4 Expected format of data files

The actual time series data must be stored in plain text
files. These file(s) must be formatted as follows:

• A tabular format is expected with columns sepa-
rated by the tab character (ASCII code 9).

• Time information must be in thefirst column of the
file.

• Times must be encoded as stings in ISO 8601
format (YYYY-MM-DD hh:mm:ss) with date and
time separated by a single blank. Alternatively,
one can provide only the date using the format
YYYY-MM-DD. If only the date is given, a time
of 00:00:00 is implicitly assumed.

• The times in column 1 may be given in regularor
irregular intervals. They should be in increasing
order.

5.5 Invoking tsplot 49

file colname color type name header comment nodata factor xcut

; Example with two series

obs.txt Q cyan S Observed TRUE # NA 1 FALSE
sim.txt qx_avg blue S Model TRUE # NA 1 TRUE

Figure 5.2: Example of atsplot instructions file to display two time series of observed and simulated values.

date_and_time_UTC stat1 stat2
1996-07-26 00:00:00 0.8 1
1996-07-26 01:00:00 11.5 14
1996-07-26 02:00:00 10.1 13
1996-07-26 03:00:00 3.2 3
1996-07-26 04:00:00 5.5 3
1996-07-26 05:00:00 4.7 2
1996-07-26 06:00:00 4.2 4
1996-07-26 07:00:00 3.5 4
1996-07-26 08:00:00 7.8 10
1996-07-26 09:00:00 2.8 3
1996-07-26 10:00:00 3 3
1996-07-26 11:00:00 7.3 9
1996-07-26 12:00:00 0 0
1996-07-26 13:00:00 0 0

Figure 5.3: Example of a time series file for use with
tsplot.

• The file can optionally have a header line specify-
ing column names. Such names should be valid
names in R, i. e. the first character must be a let-
ter. More letters, digits, and/or underscores may
follow.

An example of a properly formatted time series file
is shown in Fig.5.3.

5.5 Invoking tsplot

5.5.1 On Linux

On Linux, one needs to execute the shell script
tsplot.sh and supply the name of the instructions
file as a command line argument.

Using the command line

Assuming that an instructions filemyplot.txt exists
in your home directory, a call from the command line
might look as follows:

./tsplot.sh /home/myname/myplot.txt

To use this, however, one first needs to navigate to the
directory oftsplot, where thetsplot.sh resides.
This is rather inconvenient. To be able to calltsplot
from anydirectory, you could do one of the following:

• Move all files related totsplot to a directory
listed in the ’PATH’ environment variable.

• Alternatively, add the path of the directory with the
tsplot sources to thePATH environment vari-
able. SeeKneis(2012b) for details.

• Alternatively, put a script in one of the directo-
ries already contained in thePATH variable and
let this script calltsplot.sh. In that case, you
need to make sure that command line arguments
are passed on.

Using the file browser’s context menu

In Ubuntu, Nautilus Actions provide the most conve-
nient way to process an instructions file withtsplot.
After defining a new action, you can simply process an
instructions file from the Nautilus file browser’s con-
text menu. Thus, only two clicks with the right and left
mouse buttons are necessary. See the documentation of
Nautilus Actions for more info.

5.5.2 On Windows

On Windows, one needs to execute the batch file
tsplot.bat and supply the name of the instructions
file as a command line argument.

50 Chapter 5 Time series visualization tool (tsplot)

Assuming that an instructions file
c:\temp\myplot.txt exists, a call from the
command line might look as follows:

tsplot.bat c:\temp\myplot.txt

To use this, however, one first needs to navigate to
the directory oftsplot, where thetsplot.bat re-
sides. To be able to calltsplot from any directory,
you could do one of the following:

• Move all files related totsplot to a directory
listed in thepath environment variable.

• Alternatively, add the path of the directory with the
tsplot sources to thepath environment vari-
able. SeeKneis(2012b) for details.

Using the file browser’s context menu

There are basically two ways:

• Invent a new file extension for your instruction
files (example: ’.iii’). Create a new custom file
type with that extension. Then configure the
default ’open’ action for the file type so that
tsplot.bat is called with the file name as an
argument. Thus, the ’open’ action should read like
some-path\tsplot.bat "%1".

• Alternatively, one can modify the ’open’ action of
any file type by editing the Windows registry. This
is recommended for experienced users only and
will not be described here.

List of Figures

1.1 The four spatial input data sets oftopocatch. 8
1.2 Example of a file in ASCII grid format.. 9
1.3 Flow directions encoded as integer values.. 10
1.4 Steps of the vector-to-raster conversion.. 11
1.5 The approach used to iteratively build the catchments.. 11
1.6 Definition of basic properties of a river cross-section.. 13
1.7 Selection of parent cross-sections for interpolation.. 14
1.8 Interpolation of the cross-section’s characteristic functions. 14
1.10 Relation between the flow rateQ and the storage volumeV for a linear reservoir and a river reach

with an irregularly shaped cross-section.. 14
1.9 Example of an output file created byxs.reachPars. 15
1.11 Proper and improper junctions in a shape file.. 18
1.12 Typical example of a critically short reach in a dense river network. 18
1.13 Representation of a reservoir with two inflows in a map and in the input shape file. 19

2.1 Basic outline of an optimization method.. 22
2.2 Basic outline of Monte-Carlo simulation.. 22
2.3 Goodness-of-fit for a dynamic simulation model (left) and an empirical linear model (right).. . . 23
2.4 Example application of theupdate_templatemethod. 24
2.5 Another example application of theupdate_templatemethod.. 24
2.8 C++ source code of the advection-dispersion model (file:adModel.cpp). 26
2.6 Solutions of Eqn. 2.2 at a fixed set of river stations for variable times. 27
2.7 Solutions of Eqn. 2.2 at a fixed set of times for variable river stations. 27
2.9 Sample input file for the model defined in Fig. 2.8.. 27
2.10 Time series of observed concentrations (file: observations.txt). 28
2.11 Template parameter file with placeholders for the values of the parametersu andd (cf. Fig. 2.9). . 28
2.13 Output graphics created by the R code from Fig. 2.12.. 29
2.14 Output graphics created by the R code from Fig. 2.12 after narrowing of the sampling ranges (u

in 0.35. . . 0.65;d in 10 . . . 100). 29
2.12 R code to run the Monte-Carlo experiment using themops package.. 30
2.15 Example, demonstrating the use of themodel_args argument. 31
2.16 Appropriate values of the argumentssim_colTime andsim_timeConv when usingmops’s

methods with anechse-based model. 31

3.1 Alternative strategies to handle gaps a model’s input time series. 33
3.3 Example of a multi-location times series of a meteorological variable with valid (squares) and

missing data values (crosses).. 34

51

52 List of figures

3.2 Possible strategies of preparing the time series input of a spatially distributed model using
meteofill . 35

3.4 Example of a sector search in spatial interpolation.. 36
3.5 Example of sector rotation.. 36
3.6 Example to illustrate the effect of residual interpolation. 38
3.7 Example of a locations table.. 39
3.8 Example of multi-location time series file for use withmeteofill. 39

4.1 A typical river cross-section.. 41
4.2 Turbulence due to shear at the interface of flow zones.. 42
4.3 Example of geometry file in 2D format without roughness information. 43
4.4 Example of geometry file in 2D format with specified roughness. 43
4.5 Example of geometry file in 3D format without roughness information. 43
4.6 Example of geometry file in 3D format with specified roughness. 43
4.7 Example of file with flow data for use withxsAnalyzer. 43
4.8 Example of an output file produced byxsAnalyzer. 44

5.1 Screen shot of atsplot application. 48
5.2 Example of atsplot instructions file. 49
5.3 Example of a time series file for use withtsplot. 49

List of Tables

2.1 Interior of an objective function in the context of dynamic modeling. 23

3.1 Output files ofmeteofill. 40

53

54 Bibliography

Bibliography

Cunge, J., Holly, F.J., Verwey, A., 1980. Practical as-
pects of computational river hydraulics. Pitman pub-
lishing.

Kneis, D., 2012a. Eco-Hydrological Simulation
Environment (ECHSE) - Documentation of the
Generic Components. University of Potsdam,
Institute of Earth- and Environmental Sciences.
URL: http://echse.bitbucket.org/
downloads/documentation/echse_core_
doc.pdf.

Kneis, D., 2012b. Eco-Hydrological Simulation Envi-
ronment (ECHSE) - Installation and Administration
Guide. University of Potsdam, Institute of Earth-
and Environmental Sciences. URL:http://
echse.bitbucket.org/downloads/
documentation/echse_install_doc.
pdf.

Kneis, D., 2013. R-package topocatch: Pre-processing
of spatial data for hydrological catchment modeling.

Kneis, D., Bürger, G., Bronstert, A., 2012. Evaluation
of medium-range runoff forecasts for a 50 km2 wa-
tershed. Journal of Hydrology 414-415, 341–353.
doi:10.1016/j.jhydrol.2011.11.005.

55

http://echse.bitbucket.org/downloads/documentation/echse_core_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_core_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_core_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://dx.doi.org/10.1016/j.jhydrol.2011.11.005

	Contents
	1 Catchment modeling utilities (R-package topocatch)
	1.1 Purpose
	1.2 Installation
	1.3 Standard documentation
	1.4 Supported data file formats
	1.4.1 Overview
	1.4.2 ASCII grid format
	1.4.3 Shape file format

	1.5 Typical usage
	1.5.1 Step 1: Filling of the elevation model (dem.fill)
	1.5.2 Step 2: Analysis of the filled elevation model (dem.analyze)
	1.5.3 Step 3: Identification of model objects (hydroModelData)
	1.5.4 Step 4: Calculation of additional sub-basin attributes
	1.5.5 Step 5: Estimation of river cross-section properties

	1.6 Practical hints
	1.6.1 Processing of raster data
	1.6.2 Making input grids consistent
	1.6.3 Creating a proper shape file
	1.6.4 Handling very short reaches
	1.6.5 Special features in the river net
	1.6.6 Extraction of river-cross sections from elevation models

	1.7 TODO
	1.7.1 HRU support

	2 R-package for model optimization (mops)
	2.1 Purpose
	2.2 Installation
	2.3 Standard documentation
	2.4 Theoretical background
	2.4.1 Goal of optimization
	2.4.2 Optimization methods
	2.4.3 Model error as objective function
	2.4.4 Semi-automatic calibration

	2.5 Important methods in mops
	2.5.1 update_template
	2.5.2 modelError_multiDim
	2.5.3 mcs_run and mcs_eval

	2.6 Example: Monte-Carlo simulation
	2.6.1 Model equations
	2.6.2 Model implementation
	2.6.3 Observed data
	2.6.4 Monte-Carlo experiment

	2.7 Using mops with an echse-based model
	2.8 Troubleshooting
	2.8.1 General recommendations
	2.8.2 Specific recommendations

	3 Filling of gaps in meteorological time series (meteofill)
	3.1 Purpose
	3.2 Methods
	3.2.1 Filling of gaps
	3.2.2 Inverse-distance approach
	3.2.3 Residual interpolation

	3.3 Arguments and invocation of meteofill
	3.4 Input
	3.4.1 Locations table
	3.4.2 Time series file

	3.5 Output
	3.6 Hints for practical usage
	3.6.1 Missing-only data (options beyond persistence)

	4 River cross-section analysis (xsAnalyzer)
	4.1 Purpose
	4.2 Methods
	4.3 Arguments and invocation of xsAnalyzer
	4.4 Input
	4.4.1 Geometry data
	4.4.2 Flow values of interest
	4.4.3 Units

	4.5 Output

	5 Time series visualization tool (tsplot)
	5.1 Purpose
	5.2 Required software
	5.3 Instructions files
	5.4 Expected format of data files
	5.5 Invoking tsplot
	5.5.1 On Linux
	5.5.2 On Windows

	List of figures
	List of tables
	Bibliography

