Eco-Hydrological Simulation Environment
(echse)

Documentation of the Generic Components

Author David Kneis

Affiliation Institute of Earth and Environmental Sciences
Hydrology & Climatology Section,
University of Potsdam, Germany

Contact david.kneis [at] uni-potsdam.de

Project PROGRESS
Sub-project D2.2
Funding German Ministry of Education and Research (BMBF)

Last update February 27, 2014

Please help to improve this document by sending suggestion®ctions, wishes, and other useful feedback to
the author (see above).

Contents

1

Introduction 9
1.1 Theechse simulation environment 9
1.2 Potentialusesand limits. L 10
1.3 Requireduserskills 10
1.3.1 Useofexistingmodels 10
1.3.2 Developmentofmodels. 10
Basic concepts 13
2.1 Importantterms e e 13
2.1.1 ODbJeCtS. . . . o 13
2.1.2 ClaSSES. . . . o o 13
2.1.3 ODbjectgroups e 14
214 SUMMANY. o i e e e e e e e 14
2.2 Features (members)ofaclass. e 15
221 OVEIVIEW. . . . e e 15
2.2.2 Statevariables. L 15
2.2.3 Inputvariables. 15
224 Parameters 16
2.2.5 Outputvariables. 17
2.2.6 The’simulate’method 17
2.2.7 The’derivsScal’method L 18
2.3 Automaticcode generation. e e e e e 20
2.3.1 Role of generated code in thehse framework 20
2.3.2 Thecodegenerator. e 21
2.3.3 Inputsofthecodegenerator. 22
2.3.4 Outputsofthecodegenerator. 22
2.4 Example: Implementinganewclass. 22
2.4.1 Linearreservoir oo e e e e 22
2.4.2 Step 1: Declarationoftheclass. o 23
243 Step2:Codegeneration. e 23
2.4.4 Step 3: Implementing the class’methods. L. 24
245 Step4: Compilation. 24
2.5 Outline of computational steps. 28
251 OVerVIBW. o e e e 28
252 Timeandobjectloop L 28
2.5.3 Exceptionhandling 28
2.6 Interactions betweenobjects. L L 29
2.6.1 Overviewandaccessibledata. oo 29

6 Contents
2.6.2 Typesofinteractions 29
2.6.3 Handlingoffeedbacks 30
2.6.4 Conservationofmassorenergy. e 32
3 Input of echse-based models 35
3.1 Mandatory command linearguments Lo 35
3.2 Generalnotesonfileformats. 35
3.3 Unitsofvariablesandconstants. 37
3.4 Configurationdata. e 37
3.4.1 Alternative ways of passingconfigdata. 37
3.4.2 Syntax conventionS.o e 37
3.4.3 Indirectfilereferences L 38
3.4.4 Overview of configurationdataitems 38
3.5 Objectdeclarationtable. 44
3.6 Objectlinkagetable 44
3.7 Objectparameters. 46
3.7.1 Object-specific scalar parameters. 46
3.7.2 Group-specific (shared) scalar parameters. 46
3.7.3 Object-specific parameter functions., 46
3.7.4 Group-specific (shared) parameter functions 46
3.7.5 Functiondatafiles. 46
3.8 Externalforcings. 49
3.8 1 OVEIVIEW. . . . o o e 49
3.8.2 Timeseriesdatafiles. 50
3.8.3 Assignment of time series files and attributestotde®. 50
3.8.4 Assignment of external input locationstoobjects 51
3.9 Initializationof states 53
3.9.1 Initialization table for scalarstates. L Lo 53
3.9.2 Initialization table forvector states. L Lo 53
3.10 Modeloutputcontrol. e 55
3.10.1 Selecting output variables for specificobjects. 55
3.10.2 Enabling debug output for specificobjects. oL 55
3.10.3 Output of the model’s state at selected times 55
3.10.4 Precision of printedoutputs Lo 56
4 User guidelines 57
4.1 Modeldiscretization. e 57
411 Basicrule. e 57
4.1.2 Sub-discretization. 57
4.2 Optimizingforspeed. e 58
4.2.1 Parallel processing e 58
4.2.2 Miscellaneous. e 58
5 Source code (PRELIMINARY) 59
5.1 Programminglanguage. e e 59
List of figures 60
List of tables 63
64

Bibliography

Contents 7
Appendix 66
Index 66

CONTENTS

Chapter 1

Introduction

1.1 The echse simulation envi- [Promemoftypew [PromemoftypeB}
ronment

The idea of asimulation environmenis to provide a
tool which can be used to simulate different systems ‘

and/or processes in a single unified software environ-

ment. Terms sometimes used more or less synony-
mously arenodeling frameworlgeneric modebr open
structuremodel. Examples of existing modeling frame-
works in the field of earth and environmental sciences |

Specific code for Specific code for

include theObject Modeling S_ystem\huja et a_ll, 2005 typeAproblems type B problems

and theEarth System Modeling FramewofKill et al.,

2009). Examples from the field of water quality model-

ing include, for exampleAQUASIM(Reichert 1998,

the biogeochemical reactions network simulator BRNS -

(Regnier et al.2002 Thullner et al, 2009, and the Modeling framework

ECO Labsoftware DHI, 2006. (common modeling infrastructure)
The benefit of a modeling framework usually

emerges in situations, where Figure 1.1: Basic idea of a modeling framework.

e new models have to be developed in short time.

o a preliminary model has to be build and later imlyPically, thg features of a class, which includata
provement (possibly by different staff) is p|anneof_indme.tr_\od are declared/d_ﬁmed by the developer of
a specific model for a specific purpose. In contrast to
e alternative model structures are to be compared (t@t, the generic core of the modeling framework repre-
find an optimum structure or to learn about strugents the static part of the software, providing the basic
tural uncertainty). infrastructure for all models (Fid..1).
e different people are involved in collaborative Theechse_ Is intended to be_a Ilghtwe|ght, simple
to use modeling framework, being applicable to many
model development. .) S)
(but not all) simulation problems, arising in the field
¢ alarger number of individual models must be usexf (eco)-hydrology. Details on potentials and limits are
and a common (user) interface for all models summarized in Sed..2and discussed in more detail in
required (in operational forecasting, for examplehap.2.

A basic characteristics of a modeling framework its Itis |rr_1portanttto L![ndﬁrstand_tr:at tfbtsvhse s:mula-
the flexibility to simulateobjectsof differentclasses. lon environment actually consists ot two parts.

1An approximate synonym iypes 2An approximate synonym iginctions

10 Chapter 1 Introduction

The generic model cordhis is a collection of source be solved. The concept of thechse currently
files. These files provide the common modeling does not support high-accuracy solutions of PDE.

intrastructure shown at the bottom of FigL) .
e consist of a single object only. Simualting a single

The code generatofrhis is a software (currently im- object is not a practical problem, but the use of
plemented in R) to generate a large part of the other modeling tools may simply be more efficient.
application-specifisource code from basic infor-
mation provided by the model developer. The gen- . .
erated source code is guaranteed to be compatir@rle?’ ReqU|red user skills

with the source code of the generic model core. L.
1.3.1 Use of existing models
In order to create a specific model (grey boxes i

Fig. 1.1), the model developer finally has to compleﬂm skills required for using an existing model built

ment the generated source code by implementing a‘é’&f‘ theechse are the same as for any other dynamic

of methods (functions) with a simple, well defined inSYStem model. You basically need to

terface. Only at this step, source code has to be written, ynderstand the characteristics of the implemented

manually. classes (from a documentation of the specific
model).
1.2 Potential uses and limits e know which input files are required (see Chap.

be able to create all input files. This can be

Since the potential model applications in the field of ® ! |
done manually (for small projects only), by writ-

eco-hydrology are so diverse, there is (and there cannot . .

be) a modeling framework which is equally suitable for N9 Skripts (for example using R, Matlab, Python,

all those applications. Consequently, a 'good’ modeling ©tc.), and/or by using other programs such as

framework is usually one that is specialized on a certain SPreadsheet software, geographical information

range of applications (as opposed to a 'normal’ model, Systéms, or data bases.

that is specialized on a certain application alone). e understand the limits of the implemented model
Thegc hse has been devgloped in the context ofhy- \ith respect to your specific application.

drological catchment modeling and water quality mod-

eling. Therefore, this modeling framework is particu-
larly specialized on 1.3.2 Development of models

e the simulation of a collection of objects represen‘ﬁS W't,h all modeling framgwprks, thechse aims at
ing instances of different classes (e. g. catchmer{t%guu.ng the effc_)rt for_ b_undmg new models anfd for
river sections, lakes, etc.). c angmg/exten_dlng existing ones. Thus, you don'tneed
to be a professional code writer. However, to success-
e the simulation of object interactions that ar&lly create or modify models, you should
mostly of thefeed-forwardype, i. e. the simulated
flow of mass, energy, or information is mostly uni-
directional. Feedbacksi. e. two-way interations
between objects, may also be simulated but there
are currently limitations with respect to the accu- ¢ know the different features of a class supported by
racy of results. echse and understand the meaning of the classes’
'simulate’ methods (see Chap),

e understand the meaning of the terms ’'class’ and
'object’ (see any introduction on object-oriented
programming),

The current version of thechse is not recom-
mended for building models that e have basic knowledge of ordinary differential
equations and their use in the simulation of dy-

e are dominated by feedback interactions between namic systems,

the simulated objects. That is, for example, the
case in ground water or hydrodynamic modeling, e be able to program simple algorithms in any lan-
wherepartial differential equationg§PDE) have to guage,

1.3 Required user skills

11

e be willing to get familiar with the most basic el-
ements of C++ (basic data types, operators, and
flow-control) or find someone who will translate
(or wrap) your code if written in another language.

12

Chapter 1

Introduction

Chapter 2

Basic concepts

2.1 Important terms change). The general features of classes are described
in Sec.2.2

To understand the concept behind all models createdn @ typical model, the objects (no matter, of which
with the echse simulation environment, one musg¢lass) do interactin some way. These interactions typi-
know the meaning of the termdass object andob- cally represent the exchange of matter, energy, or infor-

ject group These terms are defined in the followingation between the corresponding real-world entities.
sections (see also Fig.1). For example, two lakes could exchange water via a con-

necting channel or the growth of a tree might depend on
a lake’s water level.

2.1.1 Objects The collection of all interacting objects is typically
called themodel

Objects are the basic building blocks of any model cre-

ated with theechse simulation environment. Anob-2.1.2 Classes

ject in the model typically represents a real-world ob-

ject (such as a tree, a lake, a soil column, etc.). Udd-Class represents an abstract prototype for a certain
ally, the object in the model is a simplified, abstract déPe of object fypeis an approximate synonym for
scription of the corresponding real-world object, i. €las9. A class describes the featuresaif objects that

it describes only its most important characteristics (féf€ instances of that particular class. In the language of
example height, average diameter, and age of a trégalect—oriented programming, the features of a class are
However, an Objects doaemt necessar”worrespond typ|Ca”y called 'class members’. Such member either
to an entity existing in the real-world. For exampldepresentdata (i. e. information) or methods (i. e. algo-
the function of such a more abstract object may be fighms, describing the functionality of an object of that
simply collect information on some other objects and fdass). For example, a class 'lake’ might have the water

supply this information to a third object (like a kind ofevel, the storage volume, and the geo-coordinates of its
observer). center as data members. These data members (not to be

%qpfused with the actual values) are then common to all
instances of the class, i. e. all lake objects.
&senerally, a class is distinguished from other classes

Technically speaking, an object always represents
instance of an underlying class (see S2d.2. For
example, a single tree object is an instance of the tre
class. In a typical model, (1) there are multiple iy
stances of theameclass (such as multiple trees) and (2)
multiple objects oflifferentclasses do co-exist (such as
trees and lakes).

The basic features of an object, i. e. the information e its methods. In the context of thechse, each
and functionality linked to that object, are always deter- class has only a single visible method called 'sim-
mined by the corresponding class (a tree has a diameter ulate’. This method typically describes the dynam-
and may grow, a lake has a depth and its storage may ics of the class’ state variables.

its data members (for example, the number and
names of state variables) and/or,

13

14 Chapter 2 Basic concepts

The members of classes are introduced in detail in
Sec.2.2.

2.1.3 Object groups
The term object group is used for all instances (i. €. 0b- gjasses @ /N O [:]

jects) of a particular class. If a forest of individual trees
is modeled, for example, all trees belong to the same ob- obi
ject group. Though, in many instances, the teotass jects

- =
andobject groupare (and can be) used synonymously, (Object groups) @@g q""\

they are not actually interchangeable:
0o >

A classis the prototype of all objects with the same
data and functionality. Model

An object grouprepresents the array of all objects (i. e.
instances) of a particular class.
—>

2.1.4 Summary Figure 2.1: Relation between the ternu$ass object object
The relation between the ter ss object object group andmodelvylti? the example of a hydrological catch-
ment model, consisting of sub-catchments (green polygons)

group and model IS illustrated W't_h an example in river reaches (blue lines), lakes (blue polygons), andrrive
Fig. 2.1 Another view on the relations between thesg,jes (circles).

terms is provided in Figz.2. This figure is intended for
those who are familiar with basic techniques of object-
oriented programming. Shown are 8 objects, which
belong to 2 different classes 'A" and 'B’. All these 8
objects inherit from an abstract base class 'abstractO-
bject’. It is therefore possible to keep handles to all
these objects (of different classes) in a single array by
using base-class pointers (i. e. by treating them as ob-
jects of the base class). In the same way, handles to
all object groups can be stored in a single array since
they all inherit from an abstract base class "abstractOb-
jectGroup’. In each object group, an arbitrary number
of objects may be declared. In contrast to that, only a .
single instance of each object group can exist. J L

Array of pointers
to object groups

Object group 'A’ Object group 'B'

Array of class Array of class
'A’ objects

'B' objects
Array of pointers to all objects

Figure 2.2: Classesobjects and object groupsfrom a pro-
grammers point of view.

2.2 Features (members) of a class 15

2.2 Features (members) of a class a vector state variable may be required to adequately
describe the temperature in a deep reservoir. Due to

2.2.1 Overview stratification, there are often significant vertical temper
)) ature gradients which often cannot be (convieniently)
An overview of the features (precisely: members) gfoscribed by a single value (i. e. a scalar state variable).
a class is given in Fig2.3 Details on the data mem-pnoiher example of a vector state variable is the wa-

b_ers are provided f"St_ n _Sect|0|252.2Fo 2.2.5 The o1 jevel of a river reach, measured at multiple stations
'simulate’ method, which is the most important merr5|ong that reach

ber function of a class, is addresse®ig.6

2.2.3 Input variables

2.2.2 State variables
. . . Input variables (also called forcings) represent time-
State variables describe the state of an objectata C_er%rhable data, representing the dynamic environment of
h object. Typically, changes in the values of an object’s

point in time. State variables are dynamic data, i.
their values may change over time. Consequently, at te variables are triggered by changes in the input vari-
bles. Inechse models,externalandsimulated(syn-

start of a simulation, their values must be initialized. |
echse-based models, a class may contain both smggﬁym: internal) inputs are distinguished.
valued (scalar) and vector-valued state variables.

Scalar state variables External inputs

. . . External input variables are variables, whose dynamics

Scalar state variableare state variables that take a sin- . L
: : Is notsimulated by the model. Instead, the dynamics is
gle value only. Looking at a reservoir, for example, the : . .
)] . .. prescribed, i. e. the values must be known in advance
storage volume is a scalar state variables, since it can . . .
%r the entire modeling period. The model reads those

be expressed as a single number. In contrast to that,é ?a from time series files (see S8c). When simu-

reservoirs’ water depth (as it is spatially variable) is npt. .
. ating the temperature of a reservoir, for example, solar
a scalar variable by nature. The average depth, however,

. radiation and air temperature are typically external in-
may be treated as a scalar state variable.
put variables (since the atmosphere itself is not part of

) the model). Values of the external input variables usu-
Vector state variables ally represent observations (when simulating the past).

In contrast to a scalar state variablesctor state vari- In the context of forecgstmg, the values often origi-
ablesare vector-valued, i. e. their value(s) cannot Bt from forecasts which have been produced by an

adequately expressed by a single number. For examfid€rnal model. For example, a hydrological model for
medium-term stream flow forecasting uses the forecasts

produced by a numerical weather prediction model as
input.

Method to update an object's
state (‘'simulate’ method)

State var.s | | Simulated inputs

': Scalar —‘ '— Outputs | p

L Vector | The values of simulated input variables are computed
; ; within the model itself. From the perspective of an ob-

Method to compute deriva-
tives of scalar state var.s

{Inputs (dynamic) Parameters (static)) . h) A .
j t oxternal Scalar ject, a simulated input variable is a variable, whose val-
—Simulated Object-specific ues are supplied by another object, i. e. the existence
! Class-specific of such variables is bound to interactions between ob-
Functions :
(] Methods Object-specic | jects. More precisely, a simulated input variable of an
[Data i Class-specific object 'A’ is always linked to an output variable (see

Sec.2.2.5 of another object 'B’. This is due to the fact
Figure 2.3: Overview of the features (members) of a classhat only the output variables of an object are visible
The dashed line separates data members (below) from Ck@ﬁ€and accessible by) other objects. A typical example
methods (above line). for the use of simulated inputs is the 'reservoir’ class

16 Chapter 2 Basic concepts

in a hydrological model. From the perspective of Barameter functions
reservoir, the inflow is a simulated input variable, if the

values are supplied by an upstream object. The corld many situations, some static object properites need

sponding output variable of the upstream object is ugg_be represented by functions instead of scalar param-

ally an outflow rate (of a reach) or a runoff rate (frorff€rS: An example is the relationships between water
the reservoir's catchment). depth and storage volume in a river reach or lake. The

echse basically supports two concepts of functions:

2.2.4 Parameters 1. Tabulated functions (synonym: lookup tables).

Those properties of an object which are static (i. €2, Analytical expressions.
which do not change over time), are callgarameters

As outlined in Fig 2.3, different kinds of parameters are

supported by thechse. These are described in detaifaPulated functions: - Lookup tables provide a means
in the subsequent sections. to describe also those functional relations between two

entities which cannot be reasonably captured by an
Scal ‘ analytical expression. Although, in many cases, a
calar parameters piecewise polynomial representation might be possible,

Scalar parameterare, like scalar state variables, chatookup tables offer a more flexible and convenient al-
acterized by the fact that they are single-valued. Thigrnative. Theechse supports tabulated functions as
the value of a scalar parameter is always just a sind®&@g they have a single argument only. There is support

number. In theechse, two types of scalar parameteréor both functions with regular (i. e. equally spaced)
are distinguished: arguments and functions with non-regular arguments.

Like in the case of scalar parameters, two types of
Object-specific scalar parametersThe value of these such lookup-based parameter functions may be distin-
parameters are specific for a particular object (glished:
a particular class). For example, a 'catchment’
class could have an object-specific scalar para®bject-specific parameter functions This type of
eter 'area’. Then, values of the area may be as- function is object-specific, i. e. an individual

signed to each catchment object individually. lookup table is assigned to each object (of a par-
. ticular class). For example, the rating curve might
Group-specific scalar parameters The value of such be declared as an object-specific parameter func-

? ptara(;neter cannot ble sgt for .|nd|v(;::'uatl)_objtects. tion in a 'gage’ class, since each gage has its own
nstead, a common value is assignealicobjects characteristic rating curve.

of a particular class. For example, in a 'catchment’

class, the long-wave emissivity of the snow covesoup-specific parameter functions Such a function
could be declared as a group-specific scalar param- js not associated with an individual object. Instead,
eter, if a common value for all modeled catchments it represents a common function which is accessi-
IS appropriate. ble to all objects (of a particular class).

Note: Hard-coded scalar parameters, i. e. the defi-
nition of constants in the 'simulate’ method of a clas#\nalytical expressions: If a function can be captured
provide(s) an alternative to group-specific scalar paraby a single (or few) analytical expression(s), then it is
eters. The use of hard-coded parameters is preferdifacally hard-coded, i. e. the function is defined in the
onlyif it is known that the values are strictly constantsimulate’ method of a class. It is then, strictly speak-
This is typically the case for physical constants with iag, not adata membeof the class and, therefore, hard-
well known value (such as the specific heat capacity @dded functions do not show up in F&3. Hard-coded
water). The drawback of using hard-coded parametarsalytical functions include, for example, polynomials,
is that any modification of the values requires the souraad linear, exponential, or power functions. The advan-
code to be re-compiled. Note that, strictly speakintage of using them is that the function’s return value
such hard-coded parameters are data member®f may usually be computed more quickly as compared to
the class and, therefore, they do not show up in Zig. table-lookup.

2.2 Features (members) of a class 17

A typical case of an analytical function that oneseless. Typically, output variables are used to retrieve
would hard-code is the Magnus-Formula, which is iaformation on
an empirical expression relating the air's maximum hu-
midity to air temperature. It is an example of a function
which isnot object-specific since it is practically appli- o flux rates, such as time-step averages of energy or
cable everywhere on earth. mass fluxes.

However, it is quite straightforward to make hard-) o .
coded functions object-specific. This is SimpN/—mwever, there are practically no limitations, i. e. any

achieved by passing the coefficients of analytical e_§galar vfalue which is computed (or which is accessible)
pressions via the functions interface and to define thd@dhe ‘simulate’ method of a class (see S2e.§ can

coefficients as object-specificalar parameters For P€ @ssigned to an output variable.
example, a rating curve may sometimes be expressed
by a power expression lik@ = a - H?, with a andb 2.2.6 The 'simulate’ method
being empirical coefficients ang and H representing .
discharge and stage, respectively. In such a case, gHépose and interface
may declare: andb as object-specifiscalar parame- The 'simulate’ method of a class represents the class’
tersin a’gage’ class to let each gages have its individydbst important member function which needs to be de-
rating curve. fined by the model developer.

Note that hard-coded analytical functions provide the The purpose of the 'simulate’ method is to simulate
only way of implementing functions that take multithe evolution of an object over a period of lengif.
ple variable arguments (multi-dimensional functionsthis is usually equivalent to solving a so-callieitial
This is due to the fact that there is currently no supparjue problenwhich means that
for multi-dimensional table lookup. In some situations,
however, it may be possible to split a multi-dimensionall. the values of the object’s state variables at an
function into several single-argument functions which initial time ¢, are known.
may then be represented by lookup tables.

e state variables.

2. the values at timé, + At are to be computed by
_ integratingn ordinary differential equations (one
2.2.5 Output variables ODE per state variable).

To make information about an object visible to (and us- Thus, the 'simulate’ method usually implements a so-
able for) its environmentutput variablesnust be de- |ution of the initial value problem. The ordinary differ-
clared in the respective class. In particular, output vagntial equations (ODES) to be solved are specific for
ables have to be declared in a class for all data, whicBach class and [hey typica"y describe either a mass or
energy balance (see example in S&d). Whether the
inc%egration can be performed using simple approaches
(such as a first order Euler method) or whether sophis-
e are of interest to the modeler and should (poteficated ODE solvers (see e.®tess et al 2002 are re-
tially) be available in the output files. quired, depends on the specific problem. In addition to
the updating of state variables, the 'simulation’ method
In a hydrological catchment model, for examplés responsible for calculating all auxiliary numeric data,
a 'catchment’ class might have an output variabighich are of interest to the model user, i. e. model out-
runoff’. Then, the values of that variable may serve gsuts (see Se@.2.5.
an input to an object of class 'reach’, for example, pro- In C++ notation, the interface of the ’simulate’
vided that a correspondirggmulated inpuvariable (see method looks like
Sec.2.2.3 exists in the 'reach’ class. Furthermore, the
existance of the output variable 'runoff’ allows for writ-
ing the computed runoff for user-selected catchments tovheredel t a_t is the function’s (only) argument. It
the respective output files. is of type unsigned integer and represents the simulation
In each class, at least a single output variable shotiltie step in seconds. Note that no other information are
be defined because objects of that class are otherwiassed via the function’s argument list.

e should to be passed from an object of that class
another simulated object.

.simul ate(const unsigned int delta_t)

18 Chapter 2 Basic concepts

Class-specific behavior wherenane is the name of the respective vector state

variable. If you assign the return value to a 'normal’

The leading dot in the function's name (see interfaQ/%lriable i. e. a non-constant numeric vector which is
above) indicates that this function is a class memb%ta ref,erence using

Formally speaking, it is airtual member of theab-
stract class 'abstractObject’ describing a generic ob- vect or <doubl e> = st at eVect (nane) ;

ject (Fig.2.4). The child classes describing a specific , .
type of (usually real-world) objects are derived from & COPY of the data will be created.. Note that this dis-
that abstract parent class. Through the mechanismd'8ftion is also relevant when passing the vector to a
inheritance, each child class automatically has a ,S“;llj_ncnon via the function’s argument I'St: Since you of-
ulate’ method with the interface shown above. AFEN want to pass a constant reference instead of a copy

though the function’s name is the same, the interior 8? the values, the dummy argument should be declared

the method isclass-specificsince the implementationaccordingly') .
is only present in the child classes but not in the base! "€ Purpose of the write-only methods (TaBle) is

class (Fig2.4). This makes it possible to use identicdP aSSign new values to an object's state or output vari-
ables (see example in S&t4). The write-only meth-

calls like
ods all return non-const references to scalars or vectors.
reservoir_xy. si mul at e(3600) These methods typically appear at the left-hand side of
cat chment _288. si mul at e(3600) assignment statements. They may also be used as ac-

to trigger the simulation of two objects, which aréual parameters in function calls, if the corresponding
' h;emplate parameter is a non-const reference of the ap-

instances oflifferentclasses (a reservoir’ and a 'catc))
Q'goprlate type (i. e. the parameter represents an output
8

ment’, in this example). The appropriate code for ea
object is selected automatically at run-time, based
the type information.

the function).

Mandatory actions

Access to an object’s data According to the purpose of the 'simulate’ method (see

As mentioned earlier, the time stefel t a_t is the above),thereisaminimum set of statements that should
only information passed to the 'simulate’ method vil€ present in this method for every class (see example
the argument list. All object-related data, such as tHeSec.2.4). In particular, the method should contain

values of parameters, inputs, and state variables, arﬁ statements to update the values of all state vari-
available through class methods. These methods, whicty) P
ables using the method(s) from row 1 & 2 of Ta-

may also be calledata access methodare summa-) : .
nay ¢ d ble 2.2 As discussed earlier, this usually means
rized in Table®.1and2.2 . . ! .
. that ordinary differential equations are solved (see

The read-only methods (Tab®1) are intended for also Sec2.2.7
retrieving information. They can appear at the right- B
hand side of assignments and the methods with & giatements to set the values of all output variables
scalar result type may be used in mathematical ex- (see last row of Tabl@.?).
pressions or comparisons just like normal variables of
type doubl e. The method for retrieving the val- _
ues of a vector state variable does not return a scaa?./ The 'derivsScal’ method
result but a constant reference to a numeric vectpr . . . ,
(const vector <doubl e> &. Note that it de- Rs described in Se.2.6 the purpose of the 'simulate

method is usually to integrate a single (or a set of) or-
pends on theisageof the return value whether a copy,. ,

. . .. “dinary differential equation(s) over time. In some situa-
of the retrieved data is generated or not. This is imp

I- . . oo
tant in terms of computational efficiency if the vecto&'ops' the use of a simple f|_r§t order approximation (Eu
. . : er's method) may be sufficient. Such methods, how-
are large size. To avoid the creation of a copy, you have :
o ever, are neither accurate nor stable. If more accurate
to use the returned value to initialize a const reference. .
. . and stable solutions are needed, an ODE solver must be
In C++, this would look like

used which yields higher-order estimates and automati-
const vector <double> & = stateVect (nane); cally adjusts the size of time (sub)steps.

2.2 Features (members) of a class

19

/'l Abstract base class (generic object class)
cl ass abstract Obj ect {

/1 The virtual ’'sinulate’ method renmins uninpl enented here
virtual void simulate(const unsigned int delta_t)= O;
/1 ... nore datal/function nenbers ...

iE

/1 A’reservoir’ class (child of 'abstractObject’)

cl ass object_reservoir: public abstract ject {
voi d simul ate(const unsigned int delta_t) {
Il ... Reservoir-specific inplenmentation of
}
b

/1 A’ catchnent’ class (child of 'abstractObject’)
cl ass object_catchnment: public abstract Object {
voi d sinmul ate(const unsigned int delta_t) {

/1 ... Catchnent-specific inplenentation of
}
Be

"simul at e’

"simul at e’

Figure 2.4: Specification of the 'simulate’ methods in the abstract lidass (parent class) and the application-specific child

classes. Only relevant parts of the C++ code of the classeshawn.

Theechse comes with a built-in ODE solver based t
on the 5-th order Runge-Kutta method described in
Press et al(2002. This is a quite robust algorithm.
However, its applicability is restricted toon-stiff sys-
tems of simultaneous ODE. This may be relevant if the
number of state variables of an objectis > 1.

u
As with all ODE solvers, one must pass a method to

the solver which computes the derivatives of the state
variables (with respect to time, here). The name of the 4 4t
corresponding class method is 'derivsScal’. Like 'sim-
ulate’, it is a virtual method. As the method’s name
indicates, it computes the derivatives of the scalar state
variables only (see Se2.2.2. ODE solver support for
vector state variables is currently not implemented.

delta_t

The interface of the 'derivsScal’ method is shown in
Fig. 2.8. The meaning of the dummy arguments is as
follows:

This scalarinput argument represents the
time. It is only relevant when simulating
non-autonomous systems, i. e. if the value(s)
of the derivative(s) are time-depend. Note
that this is only the case, if the forcings are
variable within a time step. In many models,
the forcings are treated as constant within a
time step and the value of is not used in
computing the derivatives.

Input vector holding the values of the state
variables whose derivatives are to be com-
puted.

Output vector, containing the derivatives
corresponding to the state variablesiin

Input value, representing the length of the
simulation time step. The intention of this
argument is to allow for unit conversions.
For example, external forcings (precipita-
tion, radiation) may be given as sum values
for a time step (mm/time step or Jftime
step, for example). When computing the
derivatives, such values need to be converted
into rates (m/s or W/ for example) using
the value ofdel ta_t.

20 Chapter 2 Basic concepts

Table 2.1: Data access methods, part I: Read-only methods. The dungumnannane, has to be substituted by the name of
the particular variable, parameter, or function to be aseésThe names are defined by the model developer. Note thatsna
must not be quoted since they do not represent strings bidan(atically defined) index constant. For the dummy argument
ar g, a numeric expression representing the function’s argtifresito be supplied.

Type of feature Call Result type

Scalar state variable st at eScal (nane) doubl e

Vector of scalar stateScal all () const vector <double> &
state variables

Vector state variable st at eVect (nane) const vector <double> &
External input i nput Ext (nane) doubl e

Simulated input i nput Si m(nane) doubl e

Parameter function par anfFun(nane, arg) doubl e

(object-specific)

Scalar parameter par anNun{ nane) doubl e

(object-specific)
Parameter function shar edPar anfun(name, arg) double
(group-specific)
Scalar parameter shar edPar anNum(nane) doubl e
(group-specific)

Table 2.2: Data access methods, part Il: Write-only methods. See Tabler details on the methods'ane argument.

Type of feature Call Assigned type

Scalar state variable set _stateScal (nanme) double &

Vector of scalar state variables set _stateScal all () vector <double> &
Vector state variable set _stateVect (nane) vector <double> &
Output variable set _out put (nane) doubl e &

In order to actually use this method, the code faan remain empty if there is no need for it (because the
computing the derivatives needs to provided in a sePDE(s) can be solved analytically, for example).
arate file (see¥i ncl ude directive in the 'derivsScal’ See Sec2.4.4for an example showing an implemen-
method in Fig2.8). This file must contain code whichtation of the 'derivsScal’ method and the use of the
assigns a value to all elements of veadardt . At the built-in ODE solver in the 'simulate’ method.
right hand side of these assignments, one can use the
access functions listed in Takitel with oneimportant
exception Onecannotcall the functionst at eScal 2.3 Automatic code generation
to access the value(s) of scalar state variable(s)! In-
stead, one must use the respective element of the inpug 1 Role of generated code in thechse
vectoru (appropriate constants for accessing a particu- framework
lar element are provided in the generated class header).
This is because of the fact that the ODE solver intess stated in Chapl, theechse is a generic model-
nally computes derivatives for various estimates of theg framework. As such, it consists of a generic, re-
state variables’ values. These estimates are passedsaible model core complemented by problem-specific
vectoru. Note that the body of the 'derivsScal’ metho@xtensions. The generic model core provides basic in-

frastructure forany dynamic simulation model. The

2.3 Automatic code generation 21

2. Code generation

Class declaration ~“Code-

1 ; Programming by
s, Generator, model developer .
i v 3. Implementation of methods
2 i . . .
J ° l are illustrated in Se@.4 with the example of a linear
ECHSE modeling reservoir class. _
framework Generated code Manually written code The advantages of the strategy of automatic code

: Class| . Interior of the class' eneration can be summarized as follows:

e The model developer does not need to manually
write all the abstract code related to the classes and
Compiers » (BT the_ corresponding objectgrqups (recall S2¢.4).
o This reduces development times for new models.

Problem-specific code

Figure 2.5: Major components of thechse modeling o The model developer does not need to care for the
framework. compatibility of the application-specific code with
the code forming the generic core of agghse

N)) o model. This makes model development really a
problem-specific extensions are required to build sim- gimpje and save task.

ulation models for a particular (type of) system.

In the case of theechse modeling framework,
problem-specific extensions are equivalent to us
defined classes with the features described in 3&c. |nstallation

The relation between the generic model core and the)))
problem-specific extensions is illustrated in Fac. The code generator is currently implemented in the

To sucessfully build a simulation model with th Programming Ianggage. It_|s conta_med in the R-
echse framework, the problem-specific part of thé)ackagecodggen which provides a S|_ngle method
source code (class definitions) must be perfectly COWhose name igener at e. The package is provided as
patible with the generic model core on the one han%l.tarba” W't_h nama:odegen__x. y.tar.gz where
On the other hand, good practice of software dev .y is a version number. Séneis(2012 for details on
opment requires that the generic core and the probl gy to install the R software and add-on packages. The
specific extensions are well separated. In fact, a gdegen package depends on no other packages.

veloper who implements the problem-specific classes _
should not need to understand or even know any deta¥@ndard documentation

of the generic core.) o _ After the codegen package has been loaded, for ex-
In theechse modeling framework, this dilemma 'Sample using the R command

solved by means of automatic source code generatinn

(Fig. 2.5). In this concept, the model developer fidgt- | i brary(”codegen”) I
claresa class by specifying the names and types of am
data members (see Fig.3for possible member types). the documentation of thgener at e method can be
In a second step, a program automatically generates@ifolayed by typing the question mark followed by the
class’ basic source code from the provided declaratighethod’s name.

This gene_rated codeis g_uaranteed to _be compati_b!e' ’égener at e I
the generic core. It provides entry points for additior.

source code which has to be manually written in a third

step. This manually written code comprises the bod-

ies of the 'simulate’ and the 'derivsScal’ methods (sée<@mPles

Sections2.2.6and2.2.7). To run an illustrative example, one can use the follow-
The three steps of ing R command.

2:3.2 The code generator

1. Declaration of data members AL Gl EmEr i) I

22 Chapter 2 Basic concepts

It generates sample input files for tigenerate 2.3.4 Outputs of the code generator
method and then runs the method on these files.

other practical example, can be found in S2é Aﬂie code generator produces several C++ header files

(file extension ".h’). The individual files are only briefly
described here. The files’ contents is not shown.
2.3.3 Inputs of the code generator

] Instantiation function definition filéThis file contains a
The code generator assumes that each class is declaredgynction which, when called, creates a single in-

in aseparatdile. Such a class declaration file must be a
plain, TAB-separated text file with two columns 'type’
and 'name’ (see Fig2.7 for an example). Each record

in this table declares a single data member of the class.
The meaning of the two columns is as follows:

t ype (string) The type of the feature to be declared.
Valid entries are listed in Tab.3.

nane (string) The name of the variable, parameter, or
function to be declared. The name must be a valid
C++ identifier.

Header bundle fileThis file contains C++

stance of each object group based on class tem-
plate. The function returns a handle to the object
groups (in the form of a pointer vector).

include
statements, referencing all header files created
by the code generator, except for the file it-
self. This provides a means to include a variable
(application-specific) number of header files into
the generic source files without the need for any
modification there.

In addition to these two mandatory columns, the tabtd@ss header file(sFor each class declared by the

may have additional columns which are ignored during
processing by the code generator. For the purpose of
documentation, it is recommended to append at least
one column with a short description of each feature and
probably the physical units. Moreover, the file may con-
tain comment lines starting with tlecharacter (see ex-
ample in Fig.2.7). It may be convenient to prepare the

model developer, a header file is generated. It de-
scribes the abstract prototype of an object of the re-
spective class. Note that the implementation of the
class’ methods 'simulate’ or 'derivsScal’ armt
contained here. Instead, references to include files
are generated and these include files must be man-
ually filled with code by the model developer.

table in a spreadsheet software first and to save the Ccfex constants file(sfFor each class declared by the

tents to a text file later (by copy & paste, for example).

Table 2.3: Description of the keywords expected in the 'type’
column of a class declaration table (see example inZEig.

Keyword Type of feature

st at eScal Scalar state variable

st at eVect Vector state variable

i nput Ext External input variable

i nput Si m Simulated input variable

par amNum Object-specific scalar pa-
rameter

shar edPar amNum Group-specific scalar pa-
rameter

par anfFun Object-specific parameter
function

shar edPar anfFun Group-specific parameter
function

out put Output variable

model developer, a file with index constants is cre-
ated. These index constants must be used when
guerying or manipulating an object’s data via the
methods described in Tabl2sland2.2. The auto-
matically defined constants allow for referencing a
particular variable, parameter, or functioyname
(see the 'name’ argument in Taki?el and the ex-
amplesin Se.4.4. This makes data access con-
venient, efficient, and save at the same time.

2.4 Example: Implementing a new

class

2.4.1 Linear reservoir

In this example, we implement a class describing a so-
called 'single linear reservoir’. The linear reservoir is a
widely used conceptual model in the field of hydrology.
Applications range from describing the storage of water
in catchments to flow routing in rivers. A single linear

reservoir (Fig2.6) is fully described by two equations:

2.4 Example: Implementing a new class 23

the continuity equation represenring the mass balance a single input variable (inflow rate;,). We as-
(Eqn.2.1) and the linear outflow equation (E¢h2). sume here that this is a simulated input rather than
an external input (recall Se2.2.3.

dv

— =gin—q (2.1) e asingle output variable (outflow rate,)
dt m exr .
As described in Se@.3.3 this information has to be
ow = 1 v (2.2) collected in a table-formatted text file for later process-
Tk ing by the code generator (Set4.3. An appropriate

The symbols in the above equations are defined taput file for the code generator is shown in Fag7.
low where L and T are generic units of length and time

respectively. # Declaration of a
v Storage volume (£) # linear reservoir class
¢in Rate of inflow (3/T) type name
ge Rate of outflow (I3/T)
k Retention constant (T) stat eScal v
par amNum k
g i nput Si m g_in
¢ out put q_ex
%
1
Qo= K v Figure 2.7: Input file for the code generator, containing the

> declaration of a linear reservoir class. See Tab&for the

Figure 2.6: Sketch of a single linear reservoir. entries allowed in the ‘type’ column.

The ordinary differential equation that results from

combining Eqns2.1and2.2can be solved analytically.2 4.3 Step 2: Code generation
With the simplest assumption of a constant inflow rate
gin. OVeEr a time step of lengthv¢ the integration yields Once all data members of all classes have been declared

Eqn.2.3, wherev(to) is the initial storage at timg,. ~ in the required form (see Se2.3.3and Fig.2.7), the
table is further processed by the code generator. As-

At/ suming that the contents of Fig.7 is saved in a file
v(to+At) = (v(to) — gin - k)-e2"F gk (2.3) linRes.txt, an appropriate call to the code generator

Using Eqn.2.2 one can also transform Eqa.3into cOUld be:
an expression for the outflow ragg, (Eqn.2.4). l'i brary("codegen")
gener at e(

(—At/k) files=c(linReserv="linRes.txt"),
Qez(ﬁO‘f'At) = (QGz(ﬁO) - an) ‘e +QZn (24) outdir=" gener at ed_code"
overw ite=TRUE

2.4.2 Step 1: Declaration of the class)

To declare a new class, the model developer sim-Note that the vector of class declaration files passed
ply needs to specify the clasdata membergrecall tothef i | es argument must have as many elements as
Sec.2.2.1). With respect to the example of the lineathere are classes in the model. In our minimum exam-
reservoir (Sec2.4.7), one would have to declare ple with only a single class, this vector is of lenght 1.
Also note that this must bersamedvector because the
class’ names are generated from the elements’ names.
e a single scalar parameter (retention constgnt Thus, the name for the linear reservoir class would be

We assume here that this parameter is objedinReserv’ in the above example.

specific, i. e. each linear reservoir has an individ- The complete output from the above call to the

ual k. gener at e method is not presented here. An an

e asingle scalar state variable (storage volume

24 Chapter 2

Basic concepts

overview of the created files was already given in
Sec.2.3.4and a central part of the generated code is
shown in Fig2.8.

2.4.4 Step 3: Implementing the class’
methods

As mentioned in Section8.3.1and2.3.4 the imple-
mentation (i. e. the body code) of the 'simulate’ and
'derivsScal’ methods has to be provided by the model
developer. The code generator only creates appropriate
method interfaces and include statements. For the lin-
ear reservoir class introduced in S8c4.], part of the
generated code is shown in Fiy8.

Two complete, alternative bodys of the 'simulate’
and 'derivsScal’ methods of the linear reservoir class
are presented in Fig2.9 & 2.1Q0 This is the code
which would be imported by th#i ncl ude directives
in Fig. 2.8

2.4.5 Step 4: Compilation

Once the code generator has run successfully and the
methods for all classes are implemented, the applica-
tion specific simulation software (i. e. the 'model en-
gine’) has to be build. This is achieved by compiling
and linking all parts of the source code, namely

1. the static part of the code, providing the basic in-
frastructure for every model.

2. the application-specific code created by the code
generator (see Se2.4.3.

3. the body code of the 'simulate’ and 'derivsScal’
methods, manually written by the model devel-
oper.

The GNU C++ compiler is used for this purpose and
the procedure has been successfully tested on several
platforms. To assist the developer in the compilation
process, platform-specific makefiles are available.

If invalid code is detected in the manually written
parts of the code, the compilation will fail, of course
and one has to go through the usual steps of debugging.
One should keep in mind, however, that a successful
compilation does not necessarily mean that the code is
‘correct’ in the sense that it produces the desired results.
The correctness of the code can only be verified by an-
alyzing the model’s output.

© 00N U WDNPRE

A DA DDDDDBEDEDIEDWWWWWWWWWWNNNNMNMNNNNNNNRPRREPRPREPRPRERPRRREPRE
© 00O ~NOOUTA, WNREPOOWO~NODOODMWNRPROOONOOOUGAWNMPEOOOOWLONOOOGMWNLEREO

2.4 Example: Implementing a new class 25

I ----- Franes of nethod inplenentations follow -----

/1 Inport auxiliary definitions to be used in ’sinmulate’ and ’derivsScal’
#i ncl ude "user Code_| i nReserv_aux. cpp"

/1 The ’simulate’ nethod
nanespace object _|inReserv_sinulate {
static const T_index_paranNum k= {0};
static const T_index_inputSimaqg_in= {0};
static const T_index_stateScal v= {0};
static const T_index_output q_ex= {0};
}
voi d obj ect _|inReserv::simulate(const unsigned int delta_t) {
usi ng nanespace object _|inReserv_simul ate;
try {
#i ncl ude "user Code_| i nReserv_si nul at e. cpp"
} catch (except) {
stringstream errnsg;
errnsg << "Sinulation failed for time step of length " << delta_t << ".";
except e(__PRETTY_FUNCTION__,errnsg,_ FILE ,_LINE_);
throwe);
}
}

/1 The ’derivsScal’ nethod
nanespace object _|inReserv_derivsScal {
static const T_index_paranNum k= {0};
static const T_index_inputSimaqg_in= {0};
static const unsigned int INDEX v= 0; // for use with vectors u & dudt
static const T_index_output q_ex= {0};
}
voi d obj ect_IinReserv::derivsScal (const double t,
const vect or<doubl e> &u, vector<doubl e> &Judt, const unsigned int delta t) {
usi ng nanespace object _|inReserv_derivsScal;
try {
#i ncl ude "user Code_| i nReserv_derivsScal . cpp”
} catch (except) {
stringstreamerrnsg, data;
for (unsigned int i=0; i<u.size(); i++) data << u[i] << " ";

errnsg << "Calcul ation of derivatives failed (Tine: " <<t << " Nunber" <<
" of deriv.s: " << dudt.size() << " Value(s) of state(s): " << data <<
" Length of tine step: " << delta_t << ").";
except e(__PRETTY_FUNCTION__,errnsg,_ FILE ,_LINE_);
throwe);
}
}
#endi f

Figure 2.8: Part of the generated header file for the linear reservadsgaowing the frame of the 'simulate’ and 'derivsScal’

methods. The manually written code is imported byi#thacl ude directives.

© 00N U WDNPRE

e e e
w N P O

26 Chapter 2 Basic concepts

File 'user Code_| i nReserv_aux. cpp’

/I Enpty file I

File 'user Code_I| i nReserv_si nul at e. cpp’

/'l Compute the new value of the state variable (v) at the end of the tine
/1 step. We save the value in a tenporary variabl e instead of updating v.
/1 This is because we still need the initial value in the next statenent.
doubl e v_new= (stateScal (v) - inputSim(qg_in) * param\um(k)) =

exp(- delta_t / paramNun(k));

/1 Update the output variable (q_ex). W use the reservoir’s mass bal ance
/1l to conpute the tine-step averaged outflow rate. Alternatively, we could
/1 sinmply return the instantaneous value at the end of the tine step.
set_output(g_ex)= inputSinmg_in) - (v_new - stateScal(v)) / delta_t;

/1 W can now update v (since the initial value is no | onger needed).
set _stateScal (v)= v_new,

File 'user Code_I| i nReserv_deri vsScal . cpp’

except e(__PRETTY_FUNCTION__, "Met hod not inplenmented.", _FILE , LINE);
throw(e);

Figure 2.9: Bodies of the 'simulate’ and ‘derivsScal’ methods for theetir reservoir class if an analytical solution is adopted.

© 00N O WNPRE

e e
w N P O

14

2.4 Example: Implementing a new class 27

File 'user Code_I| i nReser v_aux. cpp’

/| Enpty file I
File 'user Code_I| i nReserv_si nul at e. cpp’
/1 Save initial volunme for use mass bal ance
doubl e v_ini = stateScal (v);
/1 Conpute new val ue of v using the built-in ODE solver with arg.s 1--6
odesol ve_nonsti f f(
stateScal _all (), /1 1: Initial value(s) of state variable(s)
delta_t, /1 2: Lenght of tinme step
1.e-08, /1 3: Accuracy (adjustable)
1000, /1 4: Max. nunber of sub-steps (adjustable)
this, /1 5: Pointer to active object
set_stateScal _all()); /1 6: New val ue(s) of state variabl e(s)

/1 Set q_ex using the nass bal ance
set_output(g_ex)= inputSinm(g_in) - (stateScal(v) - v_ini) / delta_t;

File 'user Code_I| i nReserv_deri vsScal . cpp’

// Characteristic ODE of the |lineare reservoir
dudt[I NDEX_v] = inputSim(qg_in) - u[lNDEX v] / paranmNun{k);

Figure 2.10: Bodies of the 'simulate’ and ‘derivsScal’ methods for theekir reservoir class if a numerical solution is adopted.

Note that the value of the volume state variahlg¢ i the ‘derivsScal’method is accessed vl NDEX v] instead of
stat eScal (v).

28 Chapter 2 Basic concepts

2.5 Outline of computational steps single time step by calling the objects’ 'simulate’ meth-
ods (see Se@.2.6. In a spatially distributed model,
251 Overview the term ’spatial loop’ is often an appropriate synonym
for 'object loop™.
The essential computational steps carried out when exnote that theime loopis wrapped around the object
ecuting a model are summarized in Figl1 Note that |oop (Fig.2.11). This design can be found in virtually
this outline applies tanymodel built with theechse 5| spatially distributed models that solpartial differ-
simulation environment. ential equations (PDE) such as groundwater flow mod-
els or hydrodynamic models. Note, however, that a few
models exist where the two loops are in reverse order,
for example in some hydrological catchment models.
The consequence of having the object longidethe
e Reading of the configuration file (Sex4) time loop is that, for a particular time step, the 'simu-
late’ method is executed fail objects, before the com-
putation proceeds with the subsequent time step. This
allows for the exchange of information between objects
in every single time step. This is a precondition for
properly handlingeedbackdetween objects, i. e. two-
way interactions (see Fig@.13 Sec.2.6.9.

Main function

e Retrieval of command line arguments (S&d)

e Instantiation of objects & object groups (see
Fig.2.2)

e Initialization of the objects’ data.

Loop over time steps

The only drawback of this approach is the require-
¢ Updating of external inputs ment of keeping instances afl objects in memory at
the same time. Thanks to the large memory capacity of
Loop over objects modern computers, this is hardly an issue. If the num-
ber of objects should actually be too large to fit into
e Call of the 'simulate’ method fo memory, a cheap solution would be to split the model
current object (into spatial sub-domains, for example) in a way that no
N i feedback between the sub-models does occur.
e Writing of data to output files

e Closing of output files 2.5.3 Exception handling

In a complex and flexible software it is not unlikely
that an unrecoverable error occurs during computations.
e Output of traceback info in case of exceptions The potential causes are manifold, ranging from miss-
ing or erroneous input data to mathematical calculations
yielding invalid results (NaN, Inf, ect.).

The models built with theechse simulation envi-

e Clean-up

e Setting of return code and termination

Figure 2.11: Essential computational steps of a m.Od?’ "UWonment use C++'s exceptions mechanism to handle sit-
The framed boxes represent loops, thus the tasks inside thes., . . .
boxes are executed repeatedly (see SEt2. uations like th_at. Whenever an gxceptlon occurs, th_e
normal execution of the program is suspended and pri-

ority is given to exception handling. In the case of

Most of the computational steps listed in Figl1ap- echse models, this means that the currently active unit
pear in any dynamic systems simulation software. Onjly e a class method or function) tries to collect as many
those aspects which are specificstohse models are jnformation as possible about the circumstances of the

discussed in the subsequent sections. exception and then gives control back to its calling unit.
The calling unit behaves just like the unit where the ex-

ception originally occurred. In this way, the error sig-

nal is passed through the hierarchy of routines and fi-
In Fig. 2.11, the innermost framed box represents the LIn the current version of the software, the object loop i& &g

so-calledobject |0‘_3p The purpose of thiS_ loop .'[0 iter-pwo nested loops to enable parallel processing. This is seereial
ate through all objects and trigger the simulation forfer the understanding for the general understanding, hewev

2.5.2 Time and object loop

2.6 Interactions between objects 29

nally causes an exception at the highest level, the 'main’ Objects

. - . “Upstream” “downstream”
function. Here (and only here), traceback information >
is generated and the program is forced to terminate (seétep -2 J L J L M"J L J L
final step in Fig2.17). }
The traceback always contains (for every unit) infor- Step i1 J [J [Mk J [J [e
mation about =
Step i }[}[Mk][}[.
1. the name of the unit, where the exception occurred.
P sep-+ [T (0NN (AR (TP
2. adescription of the circumstances and possibly the
cause of the exception. O Current object [Access to outputs
() Full access [Inaccessible

3. the name of the source file containing the unit th

failed gltgure 2.12: Accessible data from a single object’s perspec-

tive.

4. the line of this file where the exception was

thrown. In a dynamic simulation model with sequential pro-

cgssing of the objects (see SB&.2and Fig.2.11), fur-

Based on the traceback mformatl.on, thg Iocapon_ afer limitations with respect to the acessibility of data
cause of the error can usually be identified with I|tt|80 exist. This is illustrated in Fig2.12from the per-

effort . . spective of a single object with respect to a single time
If th.e model terminated due to an exception, th_e prg,[-ep (bold-framed objectz,). Assuming that appro-
gram issues a non-zero return code. If no exception fate simulated input and output variables have been

curred, a the gode of zero is returned as this is wid Lclared in the respective classes (see above), for the
used convention. The return code should always Fhulation of time step, the objectl;, has access to
checked if the model is embedded in another software '

such as a scripts or batch files. 1. data on the object itself, representing the state at
the end of the previous time step with index 1.

2.6 Interactions between objects 2. the output variables of the already processpéd
streamobjects. These values are representative for

2.6.1 Overview and accessible data the end of theurrenttime step .

the output variables of thdownstreanobjects still
waiting for being simulated. These values are rep-
resentative for the end of thgrevioustime step

(i — 1).

Interactions between objects are a typical in natural ang '
technical systems. In this context, an interaction is de-
fined as an exchange of either matter (mass), energy, or
information. Although it is possible to simulate just a
single object or a group of non-interacting objects, in-
teractions have to be considered in the vast majorityﬁf
real-world models.)
As already outlined in Sectiorg2.3and2.2.5 an Looking at two interacting objects, one generally has
interaction between two objects is bound to the declata-distinguish betweefeed-forwardinteractions (also
tion of calledone-wayinteractions) anfeedbacksalso known
astwo-wayinteractions (Fig2.13. The difference be-
1. asimulated input variablén the class correspond-ween the two is illustrated also in Fig.14on a very
ing to the object thatisesdata provided by anothersimple example. Typical real-world examples of feed-
object. backs in the field of hydrology include

6.2 Types of interactions

2. anoutput variablein the class corresponding to e interactions between river and floodplain. River
the object thatprovidesthe data to be used by stage and groundwater level are coupled via infli-
(an)other object(s). tration and leakage, respectively.

30 Chapter 2 Basic concepts

) ! must be simulatedimultaneouslyi. e. at the same
time. To put it in other words: The ordinary dif-
¢ ¢ ? ferential equations, describing the evolution of the
state variables in object 'A’' form a coupled system
with the equations of object 'B’. To get a proper
solution, the coupled differential equations must

be integrated simultaneously using an ODE solver

Figure 2.13: Basic types of object interaction. The arrows in- .
(see e. gPress et @).2002. This, however, con-

dicate exchange of matter, energy, or information. Lefed-e

forward type. Right: Feedback type. flicts with the facts that (1) objects are geberally
treated as well-separated entities and (2) the array
Feed-forward Feedback of objects is processed sequentially using a fixed
order (see innermost loop in Fig-11). Never-
L thelessechse-based models are capable of han-

= u dling feedback interactions using the techniques
L == outlined in Sec2.6.3

2.6.3 Handling of feedbacks

Figure 2.14: Types of interactions between two buckets filled
with a liquid. Option 1: Compound classes

A straightforward approach to cope with the problem

o diffusion problems at the interface of the pelagief feedback interactions (Se2.6.2 is to avoid inter-

and benthic zone. The rate of diffusive transpogbject feedbacks. Taking the objects 'A and 'B’ from

depends on both, the concentration in the watgig. 2.13(right) as an example, this would mean that the

body and the sediment’s pore water. class(es), of which the objects'A’ and 'B’ are instances,
are joined to form a new (compound) class. The feed-
ack interaction between the former objects 'A" and
B%is then internally present in an object of the com-
pound class. The coupled differential equations related

The feedback (Fig®.13& 2.14 right) represents theto all state variables (which were originally distributed
more general type of interaction and, actually, the fee@er object A" and 'B’) can then be solved simultane-
forward interaction (Figs2.13and2.14 left) may be Ously using a standard ODE solver within the simulate
regarded just as a special type of (missing) feedbagkethod (Sec2.2.6) of the compound class.

It makes sense, however, to strictly distinguish betweenThe drawback of such an approach is that the com-
the two types of interaction in the context of dynamigound class may quickly become rather complex. In
simulation, i. e. when modeling the interaction of olextreme cases of many feedback interactions, one might
jects over a sequence of discrete time steps. This is dunel up with a model consisting of only a single object
to the following: being an instance of a single class which basically in-
tegrates 'everything’. In such a case one should think

Feed-forward typeAs long as the exchange of data bexbout other strategies (see below) or use another, more

tween two interacting objects 'A and 'B’ is effec-appropriate modeling software.

tively one-way the two objects can be simulated

sequentiallyi. e. one after another. The so-called

source objec{’A in Fig. 2.13 left) represents the Option 2: Step-wise feedback

'data provider’ and must be simulated first. The))
output of A is then used as an input for therget The simplest and probably Fhe most common solut_lon
object('B"), which is simulated later. for the feedback problem is to treat the differential

equations in the two interacting objects 'A’' and 'B’ as
Feedback typdf there is atwo-wayexchange of datatemporarily independentn practice, this works as fol-
between two objects 'A' and 'B’, these objectows:

e the operational control of a reservoir's outflo
based on stream flow data observed at a ga
downstream of the reservoir.

2.6 Interactions between objects 31

Object

Simulation stepThe objects 'A’ and 'B’ are simulated ‘upstream” “ownstream”

independendly, as if there was no interaction at all.
This means that the state variables of ‘A" and 'B’ Step -2 J { J L M«
are updated by separately integrating the respec-
tive differential equations. Step -1 } [} [M «

Mot | |

M k+1

exchange information about their new states. The
information about 'A’ is then used in the subse- Step i 1 | (0] [«
guent simulation step for ‘B’ and vice versa.

4— Time

) |

J (] |
Feedback stepAfter everytime step, the two objects step j (i). [me] [M,m] [

1w |

M k+1

(O Coupled objects l Data flows from

To make the described approachstép-wise feed- O Observer object source to target

backsuccessfully work in practice, two conditions must

be met- Figure 2.15: Use of an artificialobserver objecto provide
Firstly, the interacting objects 'A’ and 'B’ must ex-two sequentially processed, feedback-coupled objectsimt

change data with a high frequency. This is achieved fymation of equal up-to-dateness.

running the simulation in small time steps. The longer

the time step, the higher the potential numerical error _)

will be. step. In particular, it would make sense allow a variable
Secondly, it has to be ensured that the informatiGymber of sub-steps to be specified for each object. The

about object ‘B’ used by 'A refers to theame point 0nly restriction would be that the number of sub-steps
in time as the information about 'A" used by 'B’. In amust be identical for two objects having a feedback re-

is processed first, this is not the case. However, wifts 'A and ‘B’ and another one exists between two
the help of a so-calledbserver objecit is possible to objects 'C’ and 'D’, the number sub-steps applied to
supply 'A and 'B’ with data of equal up-to-datenessthe firstgroup ('A',’B") and the second group ('C’, 'D’)

in spite of sequential processing. This strategy is illuglay still be different, however. It is planned to imple-
trated by Fig2.15 In the shown example, a feedbacRent the sub-step approach in an upcoming version of
interactions exists between the objedfs and M. theechse.

The role of the auxiliary observer objetf;_ is to col-

lect data oMy, and M. which is representative for Step-wise feedback: Accuracy

a particular point in time, namely the (end of) time steP o
i — 1. The collected information is then suppliedits, 10 really understand the limits of the strategy of a step-

and Mj,,1, respectively, to be used in the simulatio}iS€ simulation of feedbacks, a closer look on the so-
over the current time step lution strategy is required. Let's take the example of

Fig. 2.15 where a feedback interaction between the ob-
jects My, and My, is simulated under the control of
an observer object/;_;. In a first step, the observer
As mentioned above, the selection of a sufficiently shabject),_, collects information from both objedt/;,
time steps is necessary to keep the error associated itk /{5, which is representative for time stép- 1.

the step-wise handling of feedbacks within acceptabife¢he objectsM} and M;., were the two connected
limits. A disadvantage of the current version of thbuckets shown in the right column of Fig.14 the
echse is that the time step is a fixed parameter. Copbserver)M;_; would collect information on the wa-
sequently, if a short time step is selected with the inteter levels in the two buckets and compute the result-
tion of increasing the accuracy of feedback solutionigg flow rate. Then, the two objeci&/;, and M4

the computation will slow down even for those objectsould retrieve the computed flow rate from the observer
which are not subject to feedback interactions. Thum)d both objects would use this information to calculate
a single feedback interaction may impact negatively émeir individual water levels at the end of time step

the performance of the entire model in terms of com- It is important to realize that the accuracy of the re-
putation time. A possible solution to this problem liesulting solution is limited by the fact that the informa-
in releasing the constraints of the fixed 'global’ timé&on on the flow rate between the two buckets is a con-

Step-wise feedback: Time step issues

32 Chapter 2 Basic concepts

tant. This rate effectively represents the sitution at the A to+At
end of time step— 1 or (in other words) the situation at q o= 1—/q(2‘) dt
the very beginningf time stepi. This constantinfor- At

mation is then used in the simulation of teetiretime b

stepi, neglecting that the water levels change, hereby

affecting the flow rate. | :
Solutions with these characteristics are also called to to +At

Euler solutions It is well known that the accuracy of

such first-order solutions is quite limited. Thereforé:,igflre 2.16: Exar.nple.outflovq from a linear reservoir within

with the current version of thechse a reasonable sim- & discrete modeling time step of lengii.

ulation of feedbacks can only be expected if

.
-

Unfortunately, these two goals cannot be achieved at
the same time and one needs to set a priority. Based on
e the chosen simulation time step is sufficientlthe example from Fig2.16 some possible options are

short. discussed in the following.

e non-linearities are weak.

A straighforward method to examine the accura
of the simulation of feedback interactions is to simpl
run the model with different time steps and to compapesimple solution would be to pass the values at time

the results for the affected objects. It is possible thgbp boundaries through two output variables:
support for higher-order solutions (Heun, Runge-Kultta,
etc.) and/or methods of automatic time step control will

oundary values

e The flow rate at the beginning of the time step

be implemented in a future version of teehse. q(to)-
e The flow rate at the end of the time sig(p, + At).
2.6.4 Conservation of mass or energy In this way, at least the information on the change of

As explained earlier, information is not continuousiij*e flow rate within the time step is retained. However,
exchanged between interacting objects but only aftBe information on the actual non-linearity is lost. Con-
discrete time steps. This is true for both feed-forwag@duently, the information on the true cumulated out-
and feedback interactions. In the usual case of ndlgw; i- €. the exchanged volume, is lost too.

linear dynamics, it is quite important to understand the

conseguences with respect to the loss of accuracy dmproper’ average

regarding the conservation of mass or energy in part,i&ﬁother option would be to pass only an average out-
ular.

f{ow rate computed as the arithmetic meamy@f) and

Recall the example of the two separate bucke &0 + Af). In most cases, this is not recommended,

shown at the left side of Fi®.14 In this feed-forward a . . ;
. . . . o because neither of the two above-mentioned goals is
interaction, the bucket at the bottom receives inflow . . . L

met. Firsty, the information on the dynamics is com-

from the other bucket. I.f We asstime that the l.Jppefetely lost. Secondly, use of the average value as de-
bucket has the characteristics of a linear reservoir (S€€

Sec.2.4.7) we known from Eqn2.4 (page23) that the med a_bov_e resul_ts N a mass balant_:e error if the true
.~ dynamics isnon-linear This is true in the example
outflow is anon-linear (exponential) function of time ,°. : L
(Fig. 2.16) (Fig. 2.16) as well as in most real-world situations.
Recalling Sec2.2.5 we know that all information]
about the upstream bucket's outflow needs to be pasid§rmediate values

to the downstream bucket through output variables. Qfith this strategy, information on the outflow at inter-
ten, the crux for the model developer is to define thRediate times is passed. For example, one could pass
output variables in way that the 3 valueg(to), ¢(to+1/2At), q(to+ At). Then, the
downstream bucket could try to re-construct the non-
linear dynamics, for examply by fitting an interpolation

2. mass (or energy) is conserved. functiong(¢) to the three values.

1. the information on the dynamics is retained.

2.6 Interactions between objects 33

Interpolation parameters loss of information at the interface between the interact-

L . . ing objects is minimized.
This is just a special case of the afore-mentioned opf‘:J)

tion. In this case, one does not pass the outflow rates
at intermediate times. Instead, the parameters of the in-
terpolation functiory(t) are passed. Depending on the
specific case and the type of the interpolation function,
this may reduce the number of necessary output vari-
ables.

'Proper’ time-step average

If the priority is on conservation of mass, one needs
to pass aproper average outflow rat@,,; from the
upstream to the downstream bucket. The two above-
mentioned approaches allow for the calculation of an
approximate average outflow rate as

1 to+ AL
Tout = 7 (t)
Gout At /t0 g

with ¢(¢) being the interpolation function. To make
this work in practice, the interpolation functigy(t)
must be integratable and allow for a reasonable fit of
the dynamics.

Another strategy which is often more straightforward
is based on a discrete mass balance for the upstream
bucket. Denoting the volume of the upstream bucket as
v and assuming eonstaninflow rateg;,,, the time-step
averaged outflow ratg,; is

v(to + At) — v(to)
At

Qout = qGin —

The approach remains applicable even if more input
or loss terms appear in the bucket's mass balance. It is
not even necessary that these terms are constant over the
time step of lengti\¢, but then, their cumulated values
(integrals overAt) must be known. In practice, these
integral values can be obtained by introducing auxiliary
state variables representing the cumulated inputs and/or
losses. These auxiliary state variables can be initialized
with zero at the begin of each time step.

Combined approaches

In some cases, it may be favourable to combine some
of the approaches discussed above. For example, one
could pass the values at the time-step boundaries as well
as the proper time-step average value. In this way, the

34

Chapter 2

Basic concepts

Chapter 3

Input of echse-based

3.1 Mandatory command line ar-
guments

Some basic settings are passed to the model via the
command line. Each of these settings is identified by
a unigue keyword. The keyword must be followed by
the equal sign '=", followed by a corresponding value.
There must be no spaces before or after the equal s
The expected keyword-value pairs are summarized
Table3.1 They may appear at the command line in any
order. In addition to these mandatory arguments, fur-
ther configuration data may be passed via the command
line (see Sec3.4).

Atypical call of the model in a shell script using only
the mandatory arguments might look as follows:

nodel file_control =config.txt
file_log=log.txt file_err=err.htm
format _err=htm silent=fal se

3.2 General notes on file formats

All input files comply with a simple quasi-standard an
can easily be created automatically (by scripts or any
spreadsheet software). For small projects, the files
even be created manually using just a text editor. The
general rules applying to all input files are as follows:

Tabular format All input files actually represent tables.
The number of columns varies from file to file and
the number of rows (records) depends generally on
the particular application. The number of columns
must be consistent for all records. The tables are
in plain text format.

Column separatorThe table columns are separated by
a reserved character which has to be specified

35

models

in the configuration file (see Se8.4). Recom-
mended choices are the TAB-character (ASCII
code 9), and/or the blank character, or the semi-
colon (quasi-standards). As an exception to the
above, the column separator used in the configu-
ration file is the equal sign ('=") and it cannot be
altered by the user.

L?ié:ble headerThe first non-blank, non-commentline of

a file is interpreted as the table header contaning
column names. Tables without header are not sup-
ported.

Character setAn input file should contain nothing but

ASCII characters. Other characters may or may
not be interpreted correctly (to be tested).

Comment linesComment character(s) have to be be

specified in the configuration file (see S&c4).
A line starting with one of the selected comment
characters is ignored when reading the table.

glank lines Blank lines are ignored when reading the

table, just like comment lines.

Rtform independencyine endings may be system

specific. On Linux/unix, the standard 1. On
Windows, it is\r\n. Input files prepared for
Linux usually also work on Windows and vice-
versa (to be tested). The line endings in the output
files depend on the platform on which the model is
running (see standards above).

Order of columnsWith one exception, the columns of

a table can be in any order (since they are identi-
fied by the columns’ names). The only exception
are time series data files (see S&8.2, where the

36

Chapter 3 Input of echse-based models

Table 3.1: Mandatory command line arguments of a model.

Keyword

Data type

Description

file_control

file_l og

file_ err

format _err

sil ent

string

string

string

string

logical

Name/path of the configuration file. This file contaalionfiguration
data (except for those data specified as additional comnia@éigu-
ments). The configuration data are discussed in detail in3Séc

Name/path of the log file created during a model rure [bly file con-
tains a compact documentation of all major steps of prongssits

contents is usually inspected in the case of abnormal pnotgemina-
tion.

Name/path of a file where traceback information stidnd written to.
This file will only be generated if the model terminates aftecurrence
of an exception. In the vast majority of cases, the infororatound in

this file will help to quickly identify what caused the excigpt.

This option controls the format used in the file spediid i | e_err.
The supported codes currently include 'xml’, 'html’, andt't For
visual inspection, the html-format is the preferred choidéne other
formats are more useful for automatic extraction of infotiova(if the
model is running in a more complex software environmentgfam-
ple). If an unsupported format code is supplied, the "txthfiat will be
used.

The model sends basic messages about the currémbétarocessing
to standard output (usually the screengiifl ent =f al se. This kind
of output may be suppressed by settirid ent =t r ue.

3.4 Configuration data 37

time information must be in the first column. sub3.4 Configuration data
sequent columns (containing data values for differ-
ent locations or variables) may be in any order. 3.4.1 Alternative ways of passing config

data
Column typesThe supported data types of a COILIrmfhe configuration data comprise all information about

fime. For numericalvalues the usual -format (0-f, °Cc model run. This includes, for exarmpl, set-
or tHe scientific e-format (1.e-01) may be useQngs like the starF and .end tlme of the simulation or the
Valid logical values ar@RUE andFAL SE (not case- Names of the various files which have to be r(_aad pefore

or during a model run. The actual data contained in the

sensitive). Datetime values must be strings In . : : .
. . referenced files (such as time series of external forcings,
ISO 8601 format, i.e. in formarYYYY- M\vi DD (9

: ues, etc.), by definition, ot belong to
hh: mm ss. Date and time must be separated arameter val) by g

. : Ye configuration data.
asingle character (recommended is a blank). There are two ways of passing configuration data to

the model:
File namesSome tables contain references to other

files. A file name can be specified using either the ® Via a configuration file.

absolute or relative path. . L .
P e viathe command line, in addition to the mandatory

))]) arguments introduced in Se&:.1
Empty tablesThere are no optional input files, which

means that all files must exist and must be rea 42 S .
able, even if they are not required for a particulat*™" yntax conventions

application. Even if there is no information to b single configuration data item generally consists of
filled in, you cannot just supply an empty file. Intyo parts: A keyword and a corresponding value. The

stead you must supply a proper table with the usugdneral syntax is shown in the following example:
header line and (at least) one record of values. The

values may (and should be) dummy values that)
are easily identified as dummies. This proceduref rui t=appl e
may seem overly complicated at first but, in fact, nunber =22
it avoids many other problems (tests in the source appl e_dat a=/ hore/ f r ed/ appl es. t xt
code, documentation of optional files, etc.).
Thus, the keyword must be followed by the equal
sign ('="), followed by the value. The value may be
. . a string, a number, a logical value, or a string encoding
3.3 Units of variables and con- a datetime value (see Se&:2). To avoid ambiguities,
stants one cannot pass the same configuration data item (iden-
tified by its keyword) via the command liremdvia the

There is no general convention, i. e. arbitrary units mg}gnﬂguratlon file. Multiple definitions of the same key-

be used for all constants and variables. The only impdfrd are generally considered as errors. The configura-
tant facts are tion data items may appear in any order. This applies to

both the configuration file and the command line.
e The units of all variables and constants used in aryl(t:r';:?cr;(e):f;; mt%;of/g:alj:Zgi(szarligweze(g;i;he
Egg?g?gz)rgl:]? k?j|:i?1n313etir|:; i;?ﬁéegzgzr?g Fgat?]% blank would be treat.ed as part of th_e keyword).
aétome care is necessary if blanks or special characters
of the source code. s)
appeamfterthe '=" character . Here are the rules:
If the configuration data item is defined in the con-
e The length of a modeling time step passed to thiguration file, all blanks after the '=" are treated as part
classes’ simulate methods as arguntgitt a_t of the value string. You don't need to use quotes here.
is given in units of seconds. Typical examples are shown below:

38 Chapter 3 Input of echse-based models

i teml=2012-01-19 00: 00: 00 3.4.4 Overview of configuration data
item2=c:\ny files\data.txt items

If a configuration data item containing blanks shoulg, . \/arious configuration data items expected by an

be passed via the command line, quotes must be ugedise_hased model are described in detail Tat8es
as in the subsequent example, wherstands for the _

mandatory arguments (see Sé&cl). Blank(s) must
not appear between the '=’ character and the opening
quotes.

nodel * date="2012-01-19 00: 00: 00"

If a configuration data item contains special charac-
ters, it must not be specified at the command line but
needs to be defined in the configuration file. This is due
to the fact that those characters may be dropped by the
C++ command line interpreter. A prominent example is
the TAB character (ASCII code 9).

3.4.3 Indirect file references

The configuration data usually contain balirect and
indirect file referencesSince the latter are sometimes
confusing to users, the difference between the two types
of file references is briefly discussed.

A direct reference is present if a configuration data
item points to adata file containing anything but file
names (typically numbers and possibly some alphanu-
meric IDs). What happens internally is this:

e The model engine reads the configration item and
finds the reference to a data file 'A.

e At the approriate stage of processing, the model
engine reads the data from A’

An indirect reference is present if a configuration
data item points to a file which contains references to
further files. What happens internally is this:

e The model engine reads the configration item and
finds the reference to a file 'A.

e The model reads file A’ and finds references to the
files'B’and 'C'.

e At the approriate stage of processing, the model
engine reads the data from 'B’ and 'C’.

In theory, it would be possible to use a cascade of
such indirect references. The current version of the
echse, however, uses indirect references of the first
level only. See Sectiorn3.8.3 3.7.3& 3.7.4for exam-
ples.

3.4 Configuration data 39

Table 3.2: Keywords of the configuration file controlling the computatil behavior.

Keyword Datatype Description

trap_fpe logical If TRUE (recommended), an exception will be thrown
if invalid floating point numbers occur in an object’s
state or output variables. HaLSE, the computation
continues (if possible) antaN or | nf values may
appear in output files.

mul tithread logical If TRUE, the model will try to execute parts
of the code that can be scheduled in paral-
lel using multiple threads (but see also keyword
mul tithread_i f_nore_than). Please consult
Sec.4.2.1before setting this switch torRUE!

singl ethread_if_| ess_t han integer This key lets you define a threshold value for paral-
lel processing. If the number of objects of a particular
level is < this threshold, these objects will be simu-
lated by a single thread (i. e. in serial mode) even if
mul tit hread=true. If the number of objects of a
particular level igjeq, multiple threads will be used. If
nmul tit hread=f al se, this setting is ignored.

Table 3.3: Keywords of the configuration file dealing with input file foats.

Keyword Datatype Description

i nput _col umSepar at or character(s) Column separator(s) used in input files. Omaaré
character(s) may be specified (typed in). Recom-
mended are TAB and space. Using TAB is especially
useful when input files are created from spreadsheet
data by copy-and-paste. When typing a TAB, take care
that it is not auto-converted to spaces by the editor (de-
pends on the editor’s settings). You cannot use charac-
ters that are part of legal object or object group names
(see Sec3.5).

i nput _I i neConment character(s) Initial character of comment lines in inp@sfil Note
that only whole-line comments are supported. A rea-
sonable choice ig, for example. You cannot use
characters that are part of legal object or object group
names (see Se8.5).

out put _col uimSepar at or character Column separator used in output files. Must be-a sin
gle character. Recommended is TAB as it allows the
contents of output files to be pasted into spreadsheets.

out put _I i neComment character Initial character of comment lines in output filds
reasonable choice isfor compatibility with R.

40

Chapter 3 Input of echse-based models

Table 3.4: Keywords of the configuration file specifying basic inputdile

Keyword Datatype Description

t abl e_obj ect Decl arati on string Name/path of the file declaring the simulated ob-
jects (see Se@.5).

t abl e_i nput Qut put Rel ati ons string Name/path of the file containing information on the

objects’ input-output relation (see SEc6).

Table 3.5: Keywords of the configuration file related to the simulationg & resolution.

Keyword Datatype Description

si nmGt art datetime Start of the simulation time window (= start of thstftime interval). Ex-
ample:2005- 01- 01 00: 00: 00. Note that a time zone without daylight
saving time (DST) is assumed, such as UTC.

si nEnd datetime End of the simulation time window (= end of the lastetinterval). See
si nfSt art for restrictions.

delta_t integer Length of a simulation time step in seconds. Musbbg& The time step

determines the frequency of data exchange between linkjettsb It also
controls the resolution of model outputs. Note that the terafresolution of
external forcings (time series of boundary conditions)tbesqual or greater
than the value oflel t a_t (see Sec3.8.2for details). Numerical methods
(such as ODE solvers) used in the simulate() method(s) draffexted by
the choice oflel t a_t and may internally use smaller time steps.

3.4 Configuration data 41

Table 3.6: Keywords of the configuration file controling the model’s juttfiles.

Keyword Datatype Description

t abl e_sel ect edQut put string Name/path of the table listing the objects and véemfor
which time series output is to be generated (see $&60.1
for details).

t abl e_debugCQut put string Name/path of the table listing the objects for whiithet
debug output is requested (see St0.2for details).

t abl e_st at eCut put string Name/path of the table with times, at which the entire
model’s state should be saved. (see Seb0.3for details).

out put Di rectory string Name of the directory where all model outputs
requested through tabl e_sel ect edQut put,
t abl e_debugQut put t abl e_st at eQut put

should be written to. Must be an existing directory with
appropriate permission. The names of the output files are
generated automatically. Note that log and error messages
are not necessarily saved in this directory. The location of
these two files in controlled by the keyworfis| e_I og
andfil e_err (see Tablé.1).

out put For mat string Selection of the desired format used to print time se-
ries of selected variables for selected objects (as con-
trolled through the input table specified after keyword
tabl e_sel ect edQut put). Currently, the two valid
choices are 'tab’ (for TAB-separated table format; file ex-
tension ’.txt") and ’json’ for output in Java Script Object
Notation (file extension ’.json’). The latter is a slim, self
documenting data interchange format (see, étd.p: / /
WWW.] son. or g) supported by many programming lan-
guages and softwares (Example: R-package ’rjson’). Note
that, using appropriate settings for the column separator,
the ".json’-files can still be imported in spreadsheet soft-
ware.

saveFi nal St ate logical Should the final model state be saved even though the
time corresponding to the end of the simulation period is
not listed in the file specified dsabl e_st at eCut put ?
This may be particularly convenient in the context of an
automatized forecasting environment.

Table 3.7: Keywords of the configuration file related to initial value§l

Keyword Datatype Description

tabl e_initial Val ues_scal string Name/path of the table with initial values for thelaca
state variables of all objects (see S&@.1).

table_initial Val ues_vect string Name/path of the table with initial values for the tegc

state variables of all objects (see S&@.2.

http://www.json.org
http://www.json.org

42

Chapter 3 Input of echse-based models

Table 3.8: Keywords of the configuration file related to external fogsn

Keyword

Data type

Description

tabl e_external | nput _datafiles

t abl e_external I nput _| ocati ons

ext ernal | nput _bufferSize

string

string

integer

Name/path of the table listing properties and
source files for the external input variables
(see Sec3.8.3.

Name/path of the table listing assigning ex-
ternal input locations and weights to the ob-
jects’ input variables (see Sex.8.9).

Number of time series records to be
kept in memory. Must be> 1. If
ext ernal | nput _buf ferSi ze=1, only

a single time series record is read at
a time. If the value is choosen too
large, memory allocation might fail for
large models (many objects and many ob-
ject variables). Choosing a larger value
of ext ernal | nput _buf ferSi ze may
optimze the reading of data from disk.
Whether there is an actual gain in perfor-
mance depends on many factors (including
input files and hard ware). Thus, it is rec-
ommended that some tests are carried out
with an increased buffer size starting from
ext ernal | nput _buf ferSi ze=1.

3.4 Configuration data

43

Table 3.9: Keywords of the configuration file related to the object g&ygarameter tables.

Keyword Data type

Description

name nunPar ansl ndi vi dual string

name f unPar ansl ndi vi dual string

name nunPar ans Shar ed string

name f unPar ans Shar ed string

Name/path of the table holding object-specific
scalar parameters for all objects of an ob-
ject group, i. e. user-defined class (see
Sec.3.7.]). The name of the object group has
to be supplied in the prefixame For exam-
ple, for a class 'apple’, the keyword would be
app! e_nunPar ansl ndi vi dual . The config-
uration file must contain as many instances of this
keyword as there are object groups (i. e. user de-
fined classes).

Like 1%t row of the table but this key is related to
the object-specifiparametefunctionsrather than
scalar parameters (see S8d..3.

Like 1% row of the table but this key is re-
lated to the group-specific (shareshalar param-
eters rather than to object-specific parameters (see
Sec.3.7.9.

Like 2" row of the table but this key is related
to the group-specific (sharegarametefunctions
rather than to scalar parameters (see 3c4).

44 Chapter 3 Input of echse-based models

3.5 Object declaration table must contain: records, wherer is the number simu-
lated input variables of the corresponding object group
(i. e. object class). The table consists of four columns
of type string and one logical column (see F3j2 for

)) _ . an example):
The object declaration table (example given in Bd)

consists of two columns of type string: t ar get Obj ect (string) Names of objects that re-
ceive input from other simulated objects.

t ar get Vari abl e (string) Name of the target ob-
ject’s input variable defined in the current row.

sour ceObj ect (string) Name of the object that sup-
plies the input to the target object and variable de-
fined in the current row.
obj ect (string) Contains the names (ID strings) of _)
all objects to be simulated. Object names mugPur ceVari abl e (string) Name of the source ob-
be unique. Valid names consist of the characters J€Ct'S output variable that supplied the input to the

a- z andA- Z, digits 0- 9, the minus {), the un- target model’s input variable.
derscore (), as well as opening and closing parei-or war dType (logical) Defines the type of relation.
thesis. If TRUE, the relation is of the forward type, which

means that the source object is simulated before
the target object (in every time step). Thus, the
input information used by the target model in the
simulation of a time intervaly...t; represents the
output information of the source model queried
at time ¢;. In other words: The state of the
source model is updated before the state of the
target model. In contrast to that, a backward re-
lation is assumed, if the entry in this column is
FALSE. Then, the target model is simulated be-
fore the source model and, consequently uses 'out-
dated’ information. In general, if the flow of
information between two objects 'A’ and 'B’ of
the feed-forward type (see Se2.6.2, the rela-
tion is always of the forward type (entmrUE re-
quired). Backward relations (entFALSE) make
sense only in the context of feedback interactions
(see Se.6.3. Inthe example shown in Fig.15
the data flows from objed/;, to Mj,_; and from
object My, to My_, represent backward rela-
tions. The reverse data flows\f,_; — My
and M_; — Mj1) represent forward relations.
Note that, if two models'A’ and 'B’ exchange data
3.6 Object Iinkage table fpr more than one variable, the type qf the rela-
tion must be the same for all those variables. For
example, object 'B’ cannot use output 'x’ of ob-
ject’Alin a forward relation and, at the same time,
use another output 'y’ of object 'A’ in a backward

The object linkage table describes the input-outputrela- relation (because non of the two objects could be
tions of the simulated models. For each object, the table simulated before the other one).

obj ect Group (string) Contains for each object the
name (1D string) of the corresponding object group
(i. e. the name of the object’s class). Valid names
must also be valid C++ identifiers, hence the char-
acter set is restricted @- z, A- Z, 0- 9, and the
underscore (). The first character cannot be a
digit or underscore but must be a letter.

3.6 Object linkage table

Sinple nodel with four objects and two cl asses (object groups)

obj ect obj ect Group
Rhi ne basi n

Const ance gage

Danube basi n

Vi enna gage

Figure 3.1: Example of a simple object declaration table.

Sinple river system
#
springl --> reachl

I

junction --> reach3
#

#

spring2 --> reach2

target Cbject targetVariable sourceObject soureVariable forwardType

reachl i nfl ow springl out f | ow true
reach2 i nfl ow spring2 out f | ow true
junction inflow 1 reachl out fl ow true
junction inflow 2 reach2 out f | ow true
reach3 i nfl ow junction out f | ow true

Figure 3.2: Example of a simple object linkage table.

46 Chapter 3 Input of echse-based models

3.7 Object parameters col _arg (string) Names of the column where the ar-
gument valuesi) reside in the corresponding data
3.7.1 Object-specific scalar parameters file.

The numerical (scalar) parameters of the simulated a®l _val (string) Names of the column where the
jects are held in different tables if there are multiple function values f(x)) reside in the corresponding
object groups (i. e. classes). For each object group, data file.

a separate table must be supplied. These tables are in

matrix format. There must be one column with name For each object, the table must contairrecords,
obj ect holding the object names (ID strings). Thavheren is the number parameter functions of the corre-
remaining column(s) hold the parameters for the corgPonding object group (i. e. object class). An example
sponding objects. The number of columns dependsiriven in Fig.3.5.

the number of parameters that objects of the particular

group (class) have. An example is given in R3cB. 3.7.4 Group-specific (shared) parameter
functions
3.7.2 Group-specific (shared) scalar pa-

In addition to object-specific parameter functions (see
rameters

Sec.3.7.3, one may define group-specific parameters

In addition to object-specific scalar parameters (si1ctions. In contrast to the former, these functions
Sec.3.7.1), group-specific scalar parameters do exi&'® shared by all objects of a particular group. Like
In contrast to the former, the values are shared by 8|l other parameters, the information for the different
objects of a particular group. The use of group-specifiRieCt groups is held in separate tables (one table per
scalar parameters is often preferred over hard-coded Paiect group). The layout of the table is similar to the
rameters since the latter cannot be altered without fAIMat described in Sed.7.3 except for the fact that
compilation of the model. To be consistent with thi1®0bj ect columniis omitted (since the functions are
object-specific scalar parameters (see Set.]), the not object-specific). Thus, the four expected columns
information for the different object groups is held i?'€:

separate tables (see example in Hdl), each having

the following two columns: function (string) Names of the functions to be as-

signed taall objects of the object group.

paranet er (string) Name of the parameter. file (string) Names of the files containing the func-
tion data (see Se@&.7.5for details on the format

val ue (numerig Value of the parameter. and restrictions).

| _arg (string) Names of the column where the ar-
gument valuesi) reside in the corresponding data

Like the numerical (scalar) parameters, the parameter file.

functions of the simulated objects are held in different

tables if there are multiple object groups (i. e. classeg)(?I

For each object group, a separate table with the follow-

ing five columns has to be supplied:

3.7.3 Object-specific parameter functions ©°

_val (string) Names of the column where the
function values {(z)) reside in the corresponding
data file.

obj ect (string) Names (ID strings) of the objects. 3.7.5 Function data files

functi on (string) Names of the functions to be asFunction data files must have (at least) two columns of
signed to the objects. numerical values: a column of argument values and col-
umn of corresponding function values (see Hd). If
fil e (string) Names of the files containing the funcmore columns are present, the additional columns are
tion data (see Se&.7.5for details on the format simply ignored. The columns must have unique names.
and restrictions). The values in the arguments column must bstirctly

3.7 Object parameters a7

Scal ar paranmeters for the individual objects of a particular class
object Ilength slope roughness
reachl 1000. 1.e-03 20.

reach2 5400. 1.e-03 25.
reach3 3300. 1.e-04 30.

Figure 3.3: Example of a table of object-specific scalar parameters.

Scal ar paraneters shared by all objects of a particular class
par anet er val ue

freezingPoint O.
1.

0
density 0

Figure 3.4: Example of a table of group-specific (shared) scalar paensiet

Assi gnnent of paraneter functions to the objects of a particular class

object function col_arg col_val file

| ake_A storage volune st age dat a/ functions/| ake_A. t xt
lake_A outflow stage flow dat a/ functions/| ake_ A. t xt
| ake_B storage vol une st age dat a/ functions/| ake_B. t xt
lake_B outflow stage flow dat a/ functions/| ake_ B.t xt

Figure 3.5: Example of a table of object-specific parameter functiorise file shows an example of two lakes, each being
described by its storage curve¢ge = f(volume)) and a rating curve at the outlet flow = f(stage)).

48

Chapter 3

Input of echse-based models

increasing order (i. e. without duplicate values). The ar-
gument valuemay or may nobe equi-spaced. Whether
the use of equi-spaced arguments is advantageous de-
pends on the specific application. Only some general
recommendations can be given:

o If the function is tabulated with high resolution
(many records) and/or the assessed argument val-
ues are highly variable from one time step to the
next, equi-spaced arguments may be preferable.
This is due to the fact that the value corresponding
to an argument can be determined by index com-
putation.

¢ |fthe appropriate resolution changes with the argu-
ment value (e. g. use of a logarithmic scale) and/or
there is a high chance that the assessed argument
values change only slightly (or not at all) from one
time step to the next, one better uses irregularly
spaced arguments. In such a case, the search al-
ways starts at the argument value that has been ac-
cessed most recently. This strategy usually allows
for smaller input files, because one can use a high
argument resolution where function values change
rapidly and a low resolution elsewhere.

3.8 External forcings

49

Storage volunme (cbn) of a river reach as a function of the flow rate (cbhnis)

flow vol une

0. 000
244,778
460. 687
759. 379
1402. 216
3290. 339

BPPESES
cocouinvoO

Figure 3.6: Example of tabulated function with irregularly spaced angat values.

3.8 External forcings

3.8.1 Overview

The assignment of external forcings to the objects of
a particular class is best illustrated using an example
(Fig. 3.7). Let's assume the growth of urban trees is to
be modeled. Five trees were selected for the study, lo-
cated around the world (3 in Berlin, 1 in Tokyo, and 1 in
Melbourne). Rain and sunshine are assumed to be the

Time series file with sunshine data

most important time-variable forcings of tree growth
and, consequently, the 'tree’ class has two external inpuf |
variables, named 'rain’ and 'sun’. Sunshine and precipi-

time Berlin

Tokyo Melbourne

tation data are available for different sets of climate sta-
tions. Fortunately, the stations recording sunshine datg
are located in the same city as the selected trees (Berlin
Tokyo, Melbourne). However, rainfall data for Berlin

Class 'tree’

External forcings

and Melbourne are unavailable. As a workaround, we
simply use the rainfall data from Tokyo also for Mel-

'sun’

bourne. For Berlin, we interpolate available data from
Moscow and Vienna instead, since Tokyo is really quite

rain’

LT K

trees

far away.

To make this strategy work, two things have to be L _

done:

time Moscow

Tokyo Vienna

1. The two external input variables of the 'tree’ class

Time series file with rain data

have to be linked with two time series files, conFigure 3.7: Example illustrating the assignment of external
taining the actual data for a single variable at alprcings to objects of a particular class.

available stations. This is illustrated by the solid
connecting lines in Fig3.7. The model’s in-
put file that is used to establish those links be-
tween variables and time series files is described
in Sec.3.8.3

2. Links must also be established between the indi-
vidual objects and the locations (i. e. climate sta-
tions). This is illustrated by the dashed connecting

50

Chapter 3 Input of echse-based models

lines in Fig.3.7. Such links exist separately for e
each external forcing. Since a single object may
be linked to more than one location, the links must
also have a 'weight’ attribute. This allows to ac-
count for the fact that Berlin is nearer to Vienna
than to Moscow, when the rainfall for Berlin is es-
timated. The model’s input file that is used to es-
tablish the links between objects and locations is
described in Se@.8.4

3.8.2 Time series data files

A time series data file is a table with the usual header
andtwo or morecolumns. As an exception to the usual
convention (see Se8.2), the time information must al-
ways be present in thiirst column of the table. The
remainingr column(s) contain the time-dependend val- With respect to the data values, the following restric-
ues of the respective variablesatocations. The order tions apply:
of these remaining columns is arbitrary since they are
identified by their column names (which usually repre- ® The values always represent averages or sums over
sent location names/IDs). The name of the first column @ certain time interval (i. e. they do not represent
containg the time information must be present but it is
ignored. A reasonable name would be the abbreviation
of the respective time zone, such as 'UTC’. An example
of a time series data file is given in Fig§.8.

The entries in the time column (first column), must .
comply with the subsequent rules:

e Times must be encoded as stings in ISO 8601 for-

mat (YYYY- Mt DD hh: mm ss) as already de-
scribed in Sec3.2 Due to this format, the highest
possible resolution is 1 second.

e Any character can be used to separate date and
time information (blank is a usual convention). 18.8.3 Assignment of time series files and

may even be identical with a character used to sep-
arate the table columns.

The resolution, i. e. the smallest time differences
betweenany neighbored records must be the
simulation time step (see keywodkl ta_t in
Table 3.5). To give an example: If the simula-
tion time step is 1 hourdel t a_t =3600), one
can use time series with a minimum resolution of
1 hour or more (i. e. 1 hour, 2 hours, 1 day, 3 days,
etc.). A time series file containing (some/only) 5
minute data, for example, will not be accepted.

If the resolution of the time series data filket
differs (for some or all interval(s)) from the sim-
ulation time stepdel t a_t, the values are auto-
matically transformed (i. e. reduced) if they rep-
resent sums (see discussion of colugums in
Sec.3.8.3.

instantaneous values). The respective time interval
is determined by the difference in times between
two neighbored records (see discussion of column
past in Sec.3.8.3for details).

Missing values or special values used to identify
invalid data (such allA) arenot supported. Thus,
data gaps must be handled by external software (or
manual work) prior to model application. It is pos-
sible, however, to use special numerical values (of-
ten -9999) to mark missing/invalid data and to treat
them properly in the classes’ simulate methods.

attributes to variables

Each external input variable which has been declared
The times must be istrictly increasing order, i. e. for a particular object class must be linked to a time
the latest data are expected in the file’s first recoséries file. The time series file contains the actual data

and there must be no duplicate times.

and its format is described in Sex8.2 In addition to

that, a time series has further attributes which describe
Regular as well as irregular time series are supew the times and values are to be interpreted.
ported, i. e. the time differences between neigh- All information on the linkage of variables and time
bored records may be variable within a file. Thiseries files as well as time series attributes hast to
offers the chance to use a higher resolution in pge supplied in a single table with the following four
riods of increased data variability and to use a logolumns:

resolution when the values change slowly (or not

at all). Such a strategy can save disk space andr i abl e (string) Names of the external input vari-

reduce the effort for reading data.

ables.

3.8 External forcings 51

Tine series data file exanple

Note that it depends on the used tine series attribute 'past’ how the

data (tenperatures) are interpreted. If past=true, the average tenperature

in Berlin between 14:00: 00 and 15:00: 00 was -1.8 degress Cel sius. However, if
past=fal se, a tenperature of -2.0 is assigned to the nentioned tine interval.

urc Berlin Tokyo Sidney
2011-11-15 14:00: 00: 00 -2.0 10. 24.
2011-11-15 15:00: 00: 00 -1.8 11. 24.
2011-11-15 16: 00: 00: 00 -1.3 11. 24.
2011-11-15 17:00: 00: 00 -1.0 10. 23.

Figure 3.8: Example of time series data file containing values of a végiabthree locations.

fil e (string) Names of the files containing the time the time interval related to the last record in the
series data for an external input variable (see file is unknown and the values are, consequently,
Sec.3.8.2for details on the format and restric- ignored. See also Fig@.8for an example.
tions). Note that the table doesot contain a column like
sums (logical) If TRUE, the data value related to a parebj ect G- oup. Thus, if an external input variable
ticular time interval is interpreted as a sum. This iwith the same name is declared in multiple object
appropriate for data generally measured as suroksses, the data are always taken from the same time
Examples include precipitation (given in units o$eries file. Thus, the table should contain as many
mm/interval) or radiation (if expressed in units ofecords as there are unique names of external input vari-
Joule/interval). IfFALSE, the data are interpretedables in all object classes. An example of a simple table
as averages over the time interval. This is appris-provided in Fig3.9.
priate, for example in case of velocities (m/s) and

the like, temperatures, or radiation intensities (ex g 4 Assignment of external input loca-
pressed in units of Watts). e tions to objects

past (Iog_ical) Itis acommon practice that time serie%he table used to establish the links between objects
data files contain a single time column only, evengnd certain columns of a time series data file (that usu-

t_he s_tored valges repres_ent averages or sums oy represent different locations) consists of the four
time intervals instead of instantaneous values (sg ums described below:

Sec.3.8.2. Consequently, there must be a conven-

tion whether a given time marks theginor the obj ect (string) Names (ID strings) of objects getting
endof an interval. This is accomplished through external input.

the setting opast . If past =t r ue, itis assumed _))

that the times given in the respective column of Wr i abl e (string) Names of the external input vari-
time series data file mar&nd-of-intervals This able(s).

is a intuitive convention used by many (but Nqtocation (string) Location(s) to be assigned to a

all Qata prow_ders_. Itis important to note that _the particular variable for a particular object. The used
begin of the time interval related to the very first | J.os00 hame must be an existing column in the

record in the file isinknowrif past =t r ue. Con- time series data linked to the respective variable
sequently, the data values of the very first record (see Sec3.8.3

are ignored. In contrast to that, times given in the
time series file are assumed to mark the beginwéi ght (numerig Weights to be assigned to a partic-
time intervals, ifpast =f al se. Then, the end of ular station for a particular variable and object. If,

52 Chapter 3 Input of echse-based models

External forcings: Assignnent of tine series files & attributes

vari able suns past file

rain true true precipitation.txt
flow false true flowates.txt
wi nd false true w ndspeed.txt

Figure 3.9: Example of table holding information on time series datafdad attributes for a set of external input variables.

for a specific variable, an object uses data from
only a single location, the weight is generally 1.0.
If, for a specific variable, the object is linked to
multiple stations, thesum of weight®over all lo-
cations (for that variable) is 1.0. This is just the
usual case of spatial interpolation or, more gener-
ally, weighted averaging (see Edhl).

The value of an external forcing applied to a particu-
lar object at a particular timeX is computed according S
to Eqn.3.1 In this equatiomy; is the weightof aloca- &~
tion with indexi as assigned in theei ght column of G2
the described table. The symhgldenotes the value of R
the external variable for the same location (inderead 9O s oo
from the respective time series data file. The number of® "
involved locations is:.

=1

The described weighting approach and its typical use | A vy
in the context of spatial interpolation is illustrated by \° N2 A
Fig.3.10 In the shown cases (a) and (b), the number of
involved locations: with respect to a particular objectrigure 3.10: Assignment of values of an external variable
and variable is 1 and the assigned weightequals 1.0. measured at multiple locations to the simulated objectse(he
In the cases (c) and (d) we hawe> 1 and multiple represented by grid cells). Shown are typical situatiois ar
weights whose values satisfy Eqhl ing in spatially distributed modeling: (a) Spatial resalntof

A minimum examp|e of atable assigning external |r{be external variabI.e mfatche.s with the model"s resolu(ib)?,
put locations to objects is given in Fig.11 This table Use of low-resolution input in a high-resolution model, (c)

corresponds to the example introduced in $e8.1 In Estimation of an object’s input by interpolation of pointaa

realistic, more complex models, such a table may b@) Use of high-resolution data in a low-resolution model.

come quite large, especially if many objects are sim-
ulated that use information of multiple external input
variables and the input (for a specific object and vari-
able) is taken from multiple locations. This is due to the
fact that the information for all objects (of all classes) is
collected in a single table.

3.9 Initialization of states

53

External forcings: Assignnent of |ocations for the 'tree exanple’

obj ect variable location weight
tree_berlinl sun Berlin 1.0
tree_berlin2 sun Berlin 1.0
tree_berlin3 sun Berlin 1.0
tree_t okyo sun Tokyo 1.0
tree_nel brn sun Mel bourne 1.0
tree_berlinl rain Mbscow 0.3
tree_berlinl rain Vi enna 0.7
tree_berlin2 rain Mbscow 0.3
tree_berlin2 rain Vi enna 0.7
tree_berlin3 rain Mbscow 0.3
tree_berlind rain Vi enna 0.7
tree_t okyo rain Tokyo 1.0
tree_mel brn rain Tokyo 1.0

Figure 3.11: Example of table holding information on the links betweesa $fmulated objects and the locations where data of
external input variables are available. The table cornegpdo the example used in S88.1(Fig. 3.7).

3.9 Initialization of states

3.9.1 Initialization table for scalar states

This table contains the initial values of all the scalar ®

state variables of all simulated objects (see Big2for

an example). The three required columns are defined as

follows:

obj ect (string) Names (ID strings) of all objects with
one or more scalar state variable(s).

vari abl e (string) Names of the scalar state vari-

able(s).

val ue (numerig Initial values assigned to the corre-

sponding variables of the respective models.

3.9.2 Initialization table for vector states

The C/C++ convention is used for the vectors’ in-
dices, i. e. the index of a vector’s first element is O
(not 1, as in many other programming languages).

For each model and variable, at least one record
must be present with a value of 0 in thedex
column. Thus, an initial value must be present at
least for one (the first) element of each vector.

More records may follow for a particular model
and variable, with values of 1 throughin the in-
dex column. The index values must increase by 1
from one record to the next, i. e. there must be no
gaps in the sequence of indices.

The highest index valuey, determines thénitial
sizeof a vector. Since indexing starts at 0, the total
vector size (number of elements)rns— 1. Note
that a vector’s size may change during simulation,
depending on the code of the simulate method of
the corresponding model class.

As opposed to the initialization table for scalar state A Simple example of an initialization table for vector
variables (see Se®.9.]), the initialization table for State variablesis givenin Fig.13

vector state variables has an additional column named

i ndex. This column is of typéntegerand contains the

element indices corresponding to the vector state vari-

able specified in thgar i abl e column. The follow-
ing rules apply to thé ndex column:

54 Chapter 3 Input of echse-based models

Initial values of all objects’ scalar state variables
obj ect vari abl e val ue

reservoir_A storage 3.e09
reservoir A waterlevel 255.8
catchnent _X snowhei ght 0.
catchrment X soil noi st .23

Figure 3.12: Example of table with initial values of scalar state varébl

Initial values of all objects’ vector state variables
obj ect vari abl e i ndex val ue

treel fruitSize 0 92.

treel fruitSi ze 1 88.

treel fruitSi ze 2 90.

... nore data ...

tree782 fruitSi ze 0 101.

tree782 fruitSi ze 1 96.

... nore data ...

Figure 3.13: Layout of a table with initial values of vector state varigl The example corresponds to a model of apple trees
having a variable number of fruits. Consequently, all prtipe of the individual apples must be held in vector statéabdes.
Initially, the apple tree 'treel’ has three fruits and 't2ébas only two. Depending on the implementation of the apEe
class, these numbers may change during simulation.

3.10 Model output control 55

3.10 Model output control o Scalar state variables

3.10.1 Selecting output variables for spe- © Vector state variables

cific objects e External input variables

For each object, the output of simulated values in thee Simulated input variables

form of time series may be requested. Note that this is .

restricted to those variables which have been declare@ Outputvariables.

as 'outputs’ in the corresponding class. Consequently;rhis kind of output is particularly useful when de-

if time series output for a state variable is required, f%gging a model. Depending on the complexity of
example, one must declare an (additional) output Vagiz " opiect's data and the number of simulated time
able in the respective obje_ct class and the value_s of glspS, the produced output files may become quite large.
state variable must be assigned to the output variableffarefore the approach described in St0.1is usu-
each time step. The same proced_ure is necessary '”a<H§7 more appropriate if only some of the computed
der to output time series of an object’s external 'npuﬁ’uantities are actually of interest.

functions, etc. The table used to request output of cer~pa taple used to request debug outputs consists of
tain variables for certain objects has the following tWRJst a single column with namebj ect (no example

columns: given). It holds the names (ID strings) of the objects

obj ect (string) Names (ID strings) of objects forfor which outputis requested. Itimtchecked whether
which output is requested. the entries in that column represent the names of ex-
_ _) isting objects. Thus, if no debug output is required at

variabl e (string) Names of output variables de)|, the table should contain just a single record with
clared in the classes corresponding to the objecisnon-existing object’s name. Note that the writing of
A separate record is expected for each variable. |grge debug output files that are not actually required

di gi t's (integed Controls the number of digits afterMay lead to a significant waste of computing time and

the decimal place. Numbers are always printed fiSk space. .
a fixed format, i. e. as 0.33 instread of 3.3e-01, for | € name(s) of the output file(s) are generated auto-
example. matlcally_ by appending an ext_enS|on (currentiybg)
to the objects’ name(s). The directory where the output
An example of such a table is given in F§14 It files will appear is controlled by the value assigned to
is important to note that it isot checked whether thekeyout put Di r ect or y in the configuration file (see
entries in theobj ect column actually represent theraple3.6).
names of existing objects. Thus, to turn affy output,
one could just supply a single record with a non-existi ,
object's name. "$10.3 Output of the model’s state at se-

Also note that the time series of all variables re- lected times

quested for a particular object are written to a single filg, some situation is is desirable to write the values of all
The name of this file is generated automatically by agate variables of all simulated a certain point in time

pending an extension (determined by the requested f@yyjisk. Potential uses of the produced file(s) containing
mat) to the object’'s name. The directory where the oyfe entire model’s statinclude

put file will appear is controlled by the value assigned to _ _ _
keyout put Di r ect or y in the configuration file (see ® restarting of the model, using the produced files to
Table3.6). initialize the state variables in a subsequent call,

_ - ¢ visualization of spatial patterns.
3.10.2 Enabling debug output for specific

objects The table used to request outputs of the model’s state

consists of just a single column with narhene (no

By requesting debug output for certain objects, it is posxample given). It holds the times for which the output
sible to create time series outputs for basicalljcom- is requested as strings in the usual ISO 8601 format (see
puted values, namely Sec.3.2). One should note that output is only created if

56 Chapter 3 Input of echse-based models

Sel ection of for certain variables and objects for tine series output
obj ect vari abl e digits

| ake_1 wat er | evel 2

| ake_1 out f | ow 3

| ake_1 tenperature O

| ake_2 temperature O

Figure 3.14: Example of a table used to request the writing of time serfes for selected output variables of certain models.

a specified time also represents the end of a simulatishereZZ is the exponent (base 10) correspondingto the

time step (exactly to the second). Thus, itis not possisiamberX. YYY. Currently, the output formatannotbe

to request the model’s state for intermediate times (sudtanged by the model user.

as 07:30, if the simulation time step is 1 hour and the A potential issue with the-X. YYYe+ZZ format is

model was started at a full hour). The only techniqubat the precision of output data is limited to a total

of suppressing outputs of the model’s state at all is tamber of 4 digits. This is sufficient for many applica-

specify (valid) times that do not meet the above criterisaons but may sometimes be problematic. In such cases,

Preferably, one specifies just a single time which is faris recommended to transform the data by adding

outside the simulation time window and easily identor subtracting an appropriate constant (at latest before

fied as a dummy such d900- 01- 01 00: 00: 00, callingtheset out put () method; see Tabl.2).

for example. Saving state information for many time Let's consider the example of a reservoir in a moun-

steps despite of the fact that it is not actually requirédinous region. Suppose that the reservoir’s water level

wastes both computing time and disk space. ranges from 2150 to 2180 m (a.s.l.) due to operation
For each point in time, two output files are creatednd fluctuations of the inflow. If the model writes the

One of the files contains the current values of scalsimulated water level to output files in units of m a.s.l.,

state variables and the other file holds the values tbe precision is limited to 1 m only! To notice that, one

the vector state variables. The used formats are idemdst consider that the minimum and maximum values

tical to the initialization tables described in S&29.1 would be printed a®. 150e+03 and 2. 180e+03,

(Fig. 3.12 and Sec3.9.2(Fig. 3.13, respectively. respectively. By subtracting an appropriate constant,
The name(s) of the output file(s) are genesay 2100, the output precision can be increased signif-

ated automatically using the respective timieantly because the new data range is 50-80 (printed

stamp. The values of the scalar state variables a%b. 000e+01 and8. 000e+01, respectively). After

saved in file statesScal _YYYYMVDDhhnmss the transformation, the precision of the printed data is

and the vector state variables are written to filbout1 cm,i. e. 100 times higher.

st at esVect _YYYYMVDDhhmss.The 14 digits

at the end of the file names encode the time (4-digit

year, followed by 2-digit month, day, hour, minute,

and second). The directory where the output files

will appear is controlled by the value assigned to key

out put Di rectory in the configuration file (see

Table3.6).

3.10.4 Precision of printed outputs

The current version of thechse writes all output
data in a scientific format with three digits after the pe-
riod. Thus, numbers are formatted likeX. YYYe+ZZ,

Chapter 4

User guidelines

4.1 Model discretization 4.1.2.1 Dynamic sub-discretization

Often, alternative options of discretizing a real-worlg the sub-discretization (i. e. the number of spatial

system do exist. Each alternative usually comes WﬁHb-units, for example) is time-variable, one must use
y ' y vector-valued state variables (see S22.2. This is

specific pros and cons. Depending in the intended & Ue to the fact that the size (i. e. the number of ele-

lication of the model rticular option m mor) :
plication of the . odel, a pa t_cug option may be no r%ents) of the vectors is allowed to change during the
or less appropriate (or convienient to use). Basic as- . . . : A
. L . . Simulation period. A dynamic sub-discretization may
pects of proper model discretization are discussed in fhe . ;
. € necessary when modeling the travelling of a flood
subsequent sections Sdcl.14.1.2 : .
wave in a homogeneous river reach represented by a
cascade of linear reservoirs. In such a model, the ap-
propriate number of linear reservoirs typically depends

on the flow rate.

The most basic rule is this: If two objects are char- The approach of using vector-valued state variables
avcterized by different sets of state variables, i. e. tR8lY introduces additional state variables (but not pa-

names of the state variables are not the same, the f@@eters, etc.). Note: Pragmatically, vector state vari-
objects belong to different classes. ables may also be 'misused’ as scalar parameters, if pa-

rameter values are variable among the sub-units. This
is, however, not efficient, because the info on parame-

4.1.2 Sub-discretization ters then (unnecessarily) appears in output files.

4.1.1 Basicrule

Real-world objects can (or must be) often further dig1 2 2 static Sub-Discretization

cretized into sub-units. This is usually the case, when o _

the object’s state variables are subject to spatially valfi-in contrast to the situation discussed above, the num-
ability. For example, a larger catchment can be brber of sub-units is constant over the simulation period,
ken into sub-catchments, that differ with respect to ceieveral alternatives do exist:

tain properties (proportion of forest, soil type, etc.).

In such situations one has to decide whether the s@ate variables only If the sub-discretization is lim-

discretization should implemented ited to state variables (i. e. all sub-units have common
. _ parameters and external inputs), one may use vector-
¢ within the object, or valued state variables. The size of the vectors is simply

held constant (by not changing it). Note: Pragmatically,
e by splitting an object into multiple separate obvector state variables may also be 'misused’ as scalar
jects. parameters, if parameter values are variable among the
sub-units. This is, however, not efficient, because the
Such a decision should be made based on the guioide on parameters then (unnecessarily) appears in out-
lines presented below. put files.

57

58 Chapter 4 User guidelines

Fixed number of sub-units If the number of sub- i. e. a machine with more than one physical CPlW

units is the same for all objects of a class, one should wsas found to be counterproductive, however, on multi-

multiple scalar state variables (and/or parameters). Eernel architectures where all kernels are part of one

ample: A catchment class, with a fixed number of landingle CPU.

use classes (such as ‘forest’, 'water’, 'urban’, 'other’). Thus, it is recommended to always empirically de-
termine the gain in computation speed (or slow down).

o] . This is easily done by inspecting the computation time
Remaining cases If (a) the sub-discretization is notyt 5 particular simulation with multi-threading being

limited to state variables (i. e. parameters are variablgnad on and off respectively (see TaBlg).
as well) and (b) the number of required sub-units is spe- '

cific to individual objects, one should treat the sub-units .
as objects of a separate (additional) class and defineé;’tpz-'2 Miscellaneous

propriate interactions between the objects of the 0ri®eclaring local variables of the simulate-Method as
nal and new class. Example: If the number of (relevangyic does not have an effect (at least when compiling
land-uses in a catchment varies from one catchmenjgh gce and optimization). It seems that the optimiza-
the next (and using a fixed number seems inefficient}, performed by the compiler prevents the repeated

one may introduce a class new 'landUseUnit'. The Suiiiocation of memory on every call of the simulate-
units are then implemented as objects of that new clagsthod.

each being linked to the corresponding catchment ob-
ject.

4.2 Optimizing for speed

4.2.1 Parallel processing

The echse software comes with built-in support

for shared-memonparallel computing. This is im-

plemented using OpenMR{(t p: / / opennp. org/)

which is supported by many modern compilers. Paral-

lel processing can be enabled/disabled by the user via a

model’s configuration data (see Tal3e).
Please note thathared-memoryarallel computing

only works on systems which are capable of running a

single processas multiple threads Please note, how-

ever, that the attempt to use multi-threading does not

necessarily increase the performance, i. e. save compu-

tation time. In fact, depending on computer architecture

(hardware) and the specific model, the model rslayv

down unexpectedly although it should become faster

from theory. A possible reasons for this undesired be-

haviour might be that the overhead for the creation of

multiple threads is higher than the actual gain from the

parallel simulation. Another possible cause might be

that, although the machine supports multiple threads,

these threads share a limited ressource (like a floating-

point arithmetic module, for example). Then, the mul-

tiple threads run §equentlally in fact 1Dell machine with 4 CPUs of type Intel Core i7-2620M, each of
Present experience has shown that paraIIeI ProC&@sich with 2 kernels, running 32 bit Ubuntu 12.04 LTS

ing is effective on a true multi-processor machine, 2Several dual-core and quad-core machines running Windows 7

http://openmp.org/

Chapter 5

Source code (PRELIMINARY)

5.1 Programming language

Execution time is critical for many operatinal and scien-
tific applications. Therefore, the use of a compiled lan-
guage (like FORTRAN 95+ or C++) is preferred over
the use of a interpreted language (like Java, Matlab, R,
...). C++ was selected as the language for implement-
ing echse for the following reasons:

e Execution speed of the compiled code.

e Full support of object-oriented (OO) programming
features.

e A standard way of exception handling exists.
o Availability of libraries.

e Availability of free compilers for any platform
(gco).

e Widespread use.

59

60

List of figures

List of Figures

1.1 Basicideaofamodelingframework. oo 9
2.1 Relation between the terrolass object object groupandmodel 14
2.2 Classesobjects andobject groupgrom a programmers pointofview. 14
2.3 Overview of the featuresofaclass. 15
2.4 Specification of the 'simulate’ methods in the abstrasexlass (parent class) and the application-
specificchildclasses. e 19
2.5 Major components of threchse modeling framework., 21
2.6 Sketchofasinglelinearreservoir.. e 23
2.7 Inputfile for the code generator, containing the detilamaf a linear reservoirclass. 23

2.8 Part of the generated header file for the linear reseclads showing the frame of the 'simulate’
and 'derivsScal’ methods. The manually written code is ingubby the#i ncl ude directives. . 25
2.9 Bodies of the 'simulate’ and 'derivsScal’ methods foe thear reservoir class if an analytical

solutionisadopted. L 26
2.10 Bodies of the 'simulate’ and 'derivsScal’ methods floe finear reservoir class if a numerical
solutionisadopted. L e 27
2.11 Essential computational stepsofamodelrun. o oo oL 28
2.12 Accessible data from a single object’s perspective.o oL 29
2.13 Basic types of objectinteraction.. 30
2.14 Types of interactions between two buckets filled witlgaidl. 30
2.15 Use of an artificiabbserver objecto provide two sequentially processed, feedback-cougbed o
jects with information of equal up-to-dateness.. 31
2.16 Example outflowy from a linear reservoir within a discrete modeling time stéfengthA¢. . . . 32
3.1 Example of a simple object declarationtable.. 45
3.2 Example of a simple objectlinkagetable.. L. 45
3.3 Example of a table of object-specific scalar parameters. 47
3.4 Example of a table of group-specific (shared) scalampeters. 47
3.5 Example of a table of object-specific parameter funstion 47
3.6 Example of tabulated function with irregularly spacegaentvalues.. 49
3.7 Example illustrating the assignment of external fagsito objects of a particular class.. 49
3.8 Example of time series data file containing values of @b at three locations. 51
3.9 Example of table holding information on time series dié¢a and attributes for a set of external
inputvariables. e e 52

3.10 Assignment of values of an external variable measunedtiple locations to the simulated objects2

3.11 Example of table holding information on the links betwéhe simulated objects and the locations
where data of external input variables are available.. 53

3.12 Example of table with initial values of scalar statéadales. 54

61

62

List of figures

3.13 Layout of a table with initial values of vector stateightes. 54

3.14 Example of a table used to request the writing of timesédiles for selected output variables of
certainmodels.

List of Tables

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Data access methods, part I: Read-only methods.. 20
Data access methods, part II: Write-onlymethods.. 20
Description of the keywords expected in the 'type’ cotuofia class declaration table. 22
Mandatory command line argumentsofamodel. 36
Keywords of the configuration file controlling the comgtignal behavior. 39
Keywords of the configuration file dealing with input firfnats. 39
Keywords of the configuration file specifying basic infiles. 40
Keywords of the configuration file related to the simwlatime & resolution. 40
Keywords of the configuration file controling the modekgputfiles. 41
Keywords of the configuration file related to initial valffiles. 41
Keywords of the configuration file related to externatiogs. 42
Keywords of the configuration file related to the objecigps’ parametertables. 43

63

64

Bibliography

Bibliography

Ahuja, L.R., Ascough, J.C., David, O., 2005. Develop-
ing natural resource models using the object model-
ing system: feasibility and challenges. Advances in
Geosciences 4, 29-36.

DHI, 2006. ECO Lab — A numerical laboratory for eco-
logical modeling. Danish hydraulic institute. URL:
http://ww. dhi sof t ware. com

Hill, C., DeLuca, C., Balaji, Suarez, M., Da Silva, A.,
2004. The architecture of the earth system modeling
framework. Computing in Science & Engineering 6,
18-28.

Kneis, D., 2012. Eco-Hydrological Simulation Envi-
ronment (ECHSE) - Installation and Administration
Guide. University of Potsdam, Institute of Earth-
and Environmental Sciences. URlattp://
echse. bi t bucket . or g/ downl oads/
docunent ati on/ echse_instal | _doc.
pdf .

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flan-
nery, B.P., 2002. Numerical recipes in Fortran 90 -
The art of parallel scientific computing. 2 ed., Cam-
bridge university press.

Regnier, P., Vanderborght, J.P., Steefel, C.l., O'Kane,
J.P., 2002. Modeling complex multi-component
reactive-transport systems: Towards a simulation en-
vironment based on the concept of a knowledge base.
Applied Mathematical Modelling 26, 913-927.

Reichert, P., 1998. AQUASIM 2.0 - Computer pro-
gram for the identification and simulation of aquatic
systems, User manual. EAWAG. URLww.
aquasi m eawag. ch.

Thullner, M., Van Cappelen, P., Regnier, P., 2005. Mod-
eling the impact of microbial activity on redox dy-
namics in porous media. Geochimica et Cosmochim-
ica Acta 69, 5005-5019.

65

http://www.dhisoftware.com
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
www.aquasim.eawag.ch
www.aquasim.eawag.ch

Index

echse, 9
boundary conditionseeexternal input

class
definition,13
membersl15
code generatoR1, 23
command line35
configuration data37

exceptions28
external input15, 49, 50, 52

forcing, seeexternal input
format

datetime 37

files, 35
function,46

generic modelseesimulation environment

input variable 15
external seeexternal input
simulated seesimulated input
interactionsseeobject interaction

linkage tableseeobject linkage table

modeling frameworkseesimulation environment

object
declaration44
definition,13
interaction 29, 44
object declaration tabld4
object group14
object linkage table44
output,55
debug 55
model state55
precision 56

selectionp5
output variablel7

parameter16
function, 16, 46
scalar,16, 46

simulate methodl7
simulated input15
simulation environmeng
state variablel5
initialization, 53
scalar,15
vector-valuedl5

time series50
traceback29

units, 37

66

	Contents
	1 Introduction
	1.1 The echse simulation environment
	1.2 Potential uses and limits
	1.3 Required user skills
	1.3.1 Use of existing models
	1.3.2 Development of models

	2 Basic concepts
	2.1 Important terms
	2.1.1 Objects
	2.1.2 Classes
	2.1.3 Object groups
	2.1.4 Summary

	2.2 Features (members) of a class
	2.2.1 Overview
	2.2.2 State variables
	2.2.3 Input variables
	2.2.4 Parameters
	2.2.5 Output variables
	2.2.6 The 'simulate' method
	2.2.7 The 'derivsScal' method

	2.3 Automatic code generation
	2.3.1 Role of generated code in the echse framework
	2.3.2 The code generator
	2.3.3 Inputs of the code generator
	2.3.4 Outputs of the code generator

	2.4 Example: Implementing a new class
	2.4.1 Linear reservoir
	2.4.2 Step 1: Declaration of the class
	2.4.3 Step 2: Code generation
	2.4.4 Step 3: Implementing the class' methods
	2.4.5 Step 4: Compilation

	2.5 Outline of computational steps
	2.5.1 Overview
	2.5.2 Time and object loop
	2.5.3 Exception handling

	2.6 Interactions between objects
	2.6.1 Overview and accessible data
	2.6.2 Types of interactions
	2.6.3 Handling of feedbacks
	2.6.4 Conservation of mass or energy

	3 Input of echse-based models
	3.1 Mandatory command line arguments
	3.2 General notes on file formats
	3.3 Units of variables and constants
	3.4 Configuration data
	3.4.1 Alternative ways of passing config data
	3.4.2 Syntax conventions
	3.4.3 Indirect file references
	3.4.4 Overview of configuration data items

	3.5 Object declaration table
	3.6 Object linkage table
	3.7 Object parameters
	3.7.1 Object-specific scalar parameters
	3.7.2 Group-specific (shared) scalar parameters
	3.7.3 Object-specific parameter functions
	3.7.4 Group-specific (shared) parameter functions
	3.7.5 Function data files

	3.8 External forcings
	3.8.1 Overview
	3.8.2 Time series data files
	3.8.3 Assignment of time series files and attributes to variables
	3.8.4 Assignment of external input locations to objects

	3.9 Initialization of states
	3.9.1 Initialization table for scalar states
	3.9.2 Initialization table for vector states

	3.10 Model output control
	3.10.1 Selecting output variables for specific objects
	3.10.2 Enabling debug output for specific objects
	3.10.3 Output of the model's state at selected times
	3.10.4 Precision of printed outputs

	4 User guidelines
	4.1 Model discretization
	4.1.1 Basic rule
	4.1.2 Sub-discretization

	4.2 Optimizing for speed
	4.2.1 Parallel processing
	4.2.2 Miscellaneous

	5 Source code (PRELIMINARY)
	5.1 Programming language

	List of figures
	List of tables
	Bibliography
	Appendix
	Index

