
Eco-Hydrological Simulation Environment
(echse)

Documentation of the Generic Components

Author David Kneis

Affiliation Institute of Earth and Environmental Sciences

Hydrology & Climatology Section,

University of Potsdam, Germany

Contact david.kneis [at] uni-potsdam.de

Project PROGRESS

Sub-project D2.2

Funding German Ministry of Education and Research (BMBF)

Last update February 27, 2014

Please help to improve this document by sending suggestions, corrections, wishes, and other useful feedback to
the author (see above).

Contents

1 Introduction 9
1.1 Theechse simulation environment. 9
1.2 Potential uses and limits. 10
1.3 Required user skills. 10

1.3.1 Use of existing models. 10
1.3.2 Development of models. 10

2 Basic concepts 13
2.1 Important terms. 13

2.1.1 Objects . 13
2.1.2 Classes. 13
2.1.3 Object groups. 14
2.1.4 Summary. 14

2.2 Features (members) of a class. 15
2.2.1 Overview . 15
2.2.2 State variables. 15
2.2.3 Input variables. 15
2.2.4 Parameters. 16
2.2.5 Output variables. 17
2.2.6 The ’simulate’ method. 17
2.2.7 The ’derivsScal’ method. 18

2.3 Automatic code generation. 20
2.3.1 Role of generated code in theechse framework . 20
2.3.2 The code generator. 21
2.3.3 Inputs of the code generator. 22
2.3.4 Outputs of the code generator. 22

2.4 Example: Implementing a new class. 22
2.4.1 Linear reservoir. 22
2.4.2 Step 1: Declaration of the class. 23
2.4.3 Step 2: Code generation. 23
2.4.4 Step 3: Implementing the class’ methods. 24
2.4.5 Step 4: Compilation. 24

2.5 Outline of computational steps. 28
2.5.1 Overview . 28
2.5.2 Time and object loop. 28
2.5.3 Exception handling. 28

2.6 Interactions between objects. 29
2.6.1 Overview and accessible data. 29

5

6 Contents

2.6.2 Types of interactions. 29
2.6.3 Handling of feedbacks. 30
2.6.4 Conservation of mass or energy. 32

3 Input of echse-based models 35
3.1 Mandatory command line arguments. 35
3.2 General notes on file formats. 35
3.3 Units of variables and constants. 37
3.4 Configuration data . 37

3.4.1 Alternative ways of passing config data. 37
3.4.2 Syntax conventions. 37
3.4.3 Indirect file references. 38
3.4.4 Overview of configuration data items. 38

3.5 Object declaration table. 44
3.6 Object linkage table. 44
3.7 Object parameters. 46

3.7.1 Object-specific scalar parameters. 46
3.7.2 Group-specific (shared) scalar parameters. 46
3.7.3 Object-specific parameter functions. 46
3.7.4 Group-specific (shared) parameter functions. 46
3.7.5 Function data files. 46

3.8 External forcings. 49
3.8.1 Overview . 49
3.8.2 Time series data files. 50
3.8.3 Assignment of time series files and attributes to variables 50
3.8.4 Assignment of external input locations to objects. 51

3.9 Initialization of states. 53
3.9.1 Initialization table for scalar states. 53
3.9.2 Initialization table for vector states. 53

3.10 Model output control. 55
3.10.1 Selecting output variables for specific objects. 55
3.10.2 Enabling debug output for specific objects. 55
3.10.3 Output of the model’s state at selected times. 55
3.10.4 Precision of printed outputs. 56

4 User guidelines 57
4.1 Model discretization . 57

4.1.1 Basic rule. 57
4.1.2 Sub-discretization. 57

4.2 Optimizing for speed. 58
4.2.1 Parallel processing. 58
4.2.2 Miscellaneous . 58

5 Source code (PRELIMINARY) 59
5.1 Programming language. 59

List of figures 60

List of tables 63

Bibliography 64

Contents 7

Appendix 66

Index 66

8 CONTENTS

Chapter 1

Introduction

1.1 The echse simulation envi-
ronment

The idea of asimulation environmentis to provide a
tool which can be used to simulate different systems
and/or processes in a single unified software environ-
ment. Terms sometimes used more or less synony-
mously aremodeling framework, generic modelor open
structuremodel. Examples of existing modeling frame-
works in the field of earth and environmental sciences
include theObject Modeling System(Ahuja et al., 2005)
and theEarth System Modeling Framework(Hill et al.,
2004). Examples from the field of water quality model-
ing include, for example,AQUASIM(Reichert, 1998),
the biogeochemical reactions network simulator BRNS
(Regnier et al., 2002; Thullner et al., 2005), and the
ECO Labsoftware (DHI, 2006).

The benefit of a modeling framework usually
emerges in situations, where

• new models have to be developed in short time.

• a preliminary model has to be build and later im-
provement (possibly by different staff) is planned.

• alternative model structures are to be compared (to
find an optimum structure or to learn about struc-
tural uncertainty).

• different people are involved in collaborative
model development.

• a larger number of individual models must be used
and a common (user) interface for all models is
required (in operational forecasting, for example).

A basic characteristics of a modeling framework is
the flexibility to simulateobjectsof differentclasses1.

1An approximate synonym istypes.

Figure 1.1: Basic idea of a modeling framework.

Typically, the features of a class, which includedata
andmethods2 are declared/defined by the developer of
a specific model for a specific purpose. In contrast to
that, the generic core of the modeling framework repre-
sents the static part of the software, providing the basic
infrastructure for all models (Fig.1.1).

Theechse is intended to be a lightweight, simple
to use modeling framework, being applicable to many
(but not all) simulation problems, arising in the field
of (eco)-hydrology. Details on potentials and limits are
summarized in Sec.1.2and discussed in more detail in
Chap.2.

It is important to understand that theechse simula-
tion environment actually consists of two parts:

2An approximate synonym isfunctions.

9

10 Chapter 1 Introduction

The generic model coreThis is a collection of source
files. These files provide the common modeling
intrastructure shown at the bottom of Fig.1.1.

The code generatorThis is a software (currently im-
plemented in R) to generate a large part of the
application-specificsource code from basic infor-
mation provided by the model developer. The gen-
erated source code is guaranteed to be compatible
with the source code of the generic model core.

In order to create a specific model (grey boxes in
Fig. 1.1), the model developer finally has to comple-
ment the generated source code by implementing a set
of methods (functions) with a simple, well defined in-
terface. Only at this step, source code has to be written
manually.

1.2 Potential uses and limits

Since the potential model applications in the field of
eco-hydrology are so diverse, there is (and there cannot
be) a modeling framework which is equally suitable for
all those applications. Consequently, a ’good’ modeling
framework is usually one that is specialized on a certain
range of applications (as opposed to a ’normal’ model,
that is specialized on a certain application alone).

Theechse has been developed in the context of hy-
drological catchment modeling and water quality mod-
eling. Therefore, this modeling framework is particu-
larly specialized on

• the simulation of a collection of objects represent-
ing instances of different classes (e. g. catchments,
river sections, lakes, etc.).

• the simulation of object interactions that are
mostly of thefeed-forwardtype, i. e. the simulated
flow of mass, energy, or information is mostly uni-
directional. Feedbacks, i. e. two-way interations
between objects, may also be simulated but there
are currently limitations with respect to the accu-
racy of results.

The current version of theechse is not recom-
mended for building models that

• are dominated by feedback interactions between
the simulated objects. That is, for example, the
case in ground water or hydrodynamic modeling,
wherepartial differential equations(PDE) have to

be solved. The concept of theechse currently
does not support high-accuracy solutions of PDE.

• consist of a single object only. Simualting a single
object is not a practical problem, but the use of
other modeling tools may simply be more efficient.

1.3 Required user skills

1.3.1 Use of existing models

The skills required for using an existing model built
with theechse are the same as for any other dynamic
system model. You basically need to

• understand the characteristics of the implemented
classes (from a documentation of the specific
model).

• know which input files are required (see Chap.3).

• be able to create all input files. This can be
done manually (for small projects only), by writ-
ing skripts (for example using R, Matlab, Python,
etc.), and/or by using other programs such as
spreadsheet software, geographical information
systems, or data bases.

• understand the limits of the implemented model
with respect to your specific application.

1.3.2 Development of models

As with all modeling frameworks, theechse aims at
reducing the effort for building new models and for
changing/extendingexisting ones. Thus, you don’t need
to be a professional code writer. However, to success-
fully create or modify models, you should

• understand the meaning of the terms ’class’ and
’object’ (see any introduction on object-oriented
programming),

• know the different features of a class supported by
echse and understand the meaning of the classes’
’simulate’ methods (see Chap.2),

• have basic knowledge of ordinary differential
equations and their use in the simulation of dy-
namic systems,

• be able to program simple algorithms in any lan-
guage,

1.3 Required user skills 11

• be willing to get familiar with the most basic el-
ements of C++ (basic data types, operators, and
flow-control) or find someone who will translate
(or wrap) your code if written in another language.

12 Chapter 1 Introduction

Chapter 2

Basic concepts

2.1 Important terms

To understand the concept behind all models created
with the echse simulation environment, one must
know the meaning of the termsclass, object, andob-
ject group. These terms are defined in the following
sections (see also Fig.2.1).

2.1.1 Objects

Objects are the basic building blocks of any model cre-
ated with theechse simulation environment. An ob-
ject in the model typically represents a real-world ob-
ject (such as a tree, a lake, a soil column, etc.). Usu-
ally, the object in the model is a simplified, abstract de-
scription of the corresponding real-world object, i. e.
it describes only its most important characteristics (for
example height, average diameter, and age of a tree).
However, an objects doesnot necessarilycorrespond
to an entity existing in the real-world. For example,
the function of such a more abstract object may be to
simply collect information on some other objects and to
supply this information to a third object (like a kind of
observer).

Technically speaking, an object always represents an
instance of an underlying class (see Sec.2.1.2). For
example, a single tree object is an instance of the tree
class. In a typical model, (1) there are multiple in-
stances of thesameclass (such as multiple trees) and (2)
multiple objects ofdifferentclasses do co-exist (such as
trees and lakes).

The basic features of an object, i. e. the information
and functionality linked to that object, are always deter-
mined by the corresponding class (a tree has a diameter
and may grow, a lake has a depth and its storage may

change). The general features of classes are described
in Sec.2.2.

In a typical model, the objects (no matter, of which
class) do interact in some way. These interactions typi-
cally represent the exchange of matter, energy, or infor-
mation between the corresponding real-world entities.
For example, two lakes could exchange water via a con-
necting channel or the growth of a tree might depend on
a lake’s water level.

The collection of all interacting objects is typically
called themodel.

2.1.2 Classes

A class represents an abstract prototype for a certain
type of object (type is an approximate synonym for
class). A class describes the features ofall objects that
are instances of that particular class. In the language of
object-oriented programming, the features of a class are
typically called ’class members’. Such member either
represent data (i. e. information) or methods (i. e. algo-
rithms, describing the functionality of an object of that
class). For example, a class ’lake’ might have the water
level, the storage volume, and the geo-coordinates of its
center as data members. These data members (not to be
confused with the actual values) are then common to all
instances of the class, i. e. all lake objects.

Generally, a class is distinguished from other classes
by

• its data members (for example, the number and
names of state variables) and/or,

• its methods. In the context of theechse, each
class has only a single visible method called ’sim-
ulate’. This method typically describes the dynam-
ics of the class’ state variables.

13

14 Chapter 2 Basic concepts

The members of classes are introduced in detail in
Sec.2.2.

2.1.3 Object groups

The term object group is used for all instances (i. e. ob-
jects) of a particular class. If a forest of individual trees
is modeled, for example, all trees belong to the same ob-
ject group. Though, in many instances, the termsclass
andobject groupare (and can be) used synonymously,
they are not actually interchangeable:

A class is the prototype of all objects with the same
data and functionality.

An object grouprepresents the array of all objects (i. e.
instances) of a particular class.

2.1.4 Summary

The relation between the termsclass, object, object
group, and model is illustrated with an example in
Fig. 2.1. Another view on the relations between these
terms is provided in Fig.2.2. This figure is intended for
those who are familiar with basic techniques of object-
oriented programming. Shown are 8 objects, which
belong to 2 different classes ’A’ and ’B’. All these 8
objects inherit from an abstract base class ’abstractO-
bject’. It is therefore possible to keep handles to all
these objects (of different classes) in a single array by
using base-class pointers (i. e. by treating them as ob-
jects of the base class). In the same way, handles to
all object groups can be stored in a single array since
they all inherit from an abstract base class ’abstractOb-
jectGroup’. In each object group, an arbitrary number
of objects may be declared. In contrast to that, only a
single instance of each object group can exist.

Figure 2.1: Relation between the termsclass, object, object
group, and modelwith the example of a hydrological catch-
ment model, consisting of sub-catchments (green polygons),
river reaches (blue lines), lakes (blue polygons), and river
nodes (circles).

Figure 2.2: Classes, objects, and object groupsfrom a pro-
grammers point of view.

2.2 Features (members) of a class 15

2.2 Features (members) of a class

2.2.1 Overview

An overview of the features (precisely: members) of
a class is given in Fig.2.3. Details on the data mem-
bers are provided first in Sections2.2.2to 2.2.5. The
’simulate’ method, which is the most important mem-
ber function of a class, is addressed in2.2.6.

2.2.2 State variables

State variables describe the state of an object at a certain
point in time. State variables are dynamic data, i. e.
their values may change over time. Consequently, at the
start of a simulation, their values must be initialized. In
echse-based models, a class may contain both single-
valued (scalar) and vector-valued state variables.

Scalar state variables

Scalar state variablesare state variables that take a sin-
gle value only. Looking at a reservoir, for example, the
storage volume is a scalar state variables, since it can
be expressed as a single number. In contrast to that, the
reservoirs’ water depth (as it is spatially variable) is not
a scalar variable by nature. The average depth, however,
may be treated as a scalar state variable.

Vector state variables

In contrast to a scalar state variables,vector state vari-
ablesare vector-valued, i. e. their value(s) cannot be
adequately expressed by a single number. For example,

Figure 2.3: Overview of the features (members) of a class.
The dashed line separates data members (below) from class
methods (above line).

a vector state variable may be required to adequately
describe the temperature in a deep reservoir. Due to
stratification, there are often significant vertical temper-
ature gradients which often cannot be (convieniently)
described by a single value (i. e. a scalar state variable).
Another example of a vector state variable is the wa-
ter level of a river reach, measured at multiple stations
along that reach.

2.2.3 Input variables

Input variables (also called forcings) represent time-
variable data, representing the dynamic environment of
an object. Typically, changes in the values of an object’s
state variables are triggered by changes in the input vari-
ables. Inechse models,externalandsimulated(syn-
onym: internal) inputs are distinguished.

External inputs

External input variables are variables, whose dynamics
is not simulated by the model. Instead, the dynamics is
prescribed, i. e. the values must be known in advance
for the entire modeling period. The model reads those
data from time series files (see Sec.3.8). When simu-
lating the temperature of a reservoir, for example, solar
radiation and air temperature are typically external in-
put variables (since the atmosphere itself is not part of
the model). Values of the external input variables usu-
ally represent observations (when simulating the past).
In the context of forecasting, the values often origi-
nate from forecasts which have been produced by an
external model. For example, a hydrological model for
medium-term stream flow forecasting uses the forecasts
produced by a numerical weather prediction model as
input.

Simulated inputs

The values of simulated input variables are computed
within the model itself. From the perspective of an ob-
ject, a simulated input variable is a variable, whose val-
ues are supplied by another object, i. e. the existence
of such variables is bound to interactions between ob-
jects. More precisely, a simulated input variable of an
object ’A’ is always linked to an output variable (see
Sec.2.2.5) of another object ’B’. This is due to the fact
that only the output variables of an object are visible
to (and accessible by) other objects. A typical example
for the use of simulated inputs is the ’reservoir’ class

16 Chapter 2 Basic concepts

in a hydrological model. From the perspective of a
reservoir, the inflow is a simulated input variable, if the
values are supplied by an upstream object. The corre-
sponding output variable of the upstream object is usu-
ally an outflow rate (of a reach) or a runoff rate (from
the reservoir’s catchment).

2.2.4 Parameters

Those properties of an object which are static (i. e.
which do not change over time), are calledparameters.
As outlined in Fig.2.3, different kinds of parameters are
supported by theechse. These are described in detail
in the subsequent sections.

Scalar parameters

Scalar parametersare, like scalar state variables, char-
acterized by the fact that they are single-valued. Thus,
the value of a scalar parameter is always just a single
number. In theechse, two types of scalar parameters
are distinguished:

Object-specific scalar parameters: The value of these
parameters are specific for a particular object (of
a particular class). For example, a ’catchment’
class could have an object-specific scalar param-
eter ’area’. Then, values of the area may be as-
signed to each catchment object individually.

Group-specific scalar parameters: The value of such
a parameter cannot be set for individual objects.
Instead, a common value is assigned toall objects
of a particular class. For example, in a ’catchment’
class, the long-wave emissivity of the snow cover
could be declared as a group-specific scalar param-
eter, if a common value for all modeled catchments
is appropriate.

Note: Hard-coded scalar parameters, i. e. the defi-
nition of constants in the ’simulate’ method of a class,
provide(s) an alternative to group-specific scalar param-
eters. The use of hard-coded parameters is preferable
only if it is known that the values are strictly constant.
This is typically the case for physical constants with a
well known value (such as the specific heat capacity of
water). The drawback of using hard-coded parameters
is that any modification of the values requires the source
code to be re-compiled. Note that, strictly speaking,
such hard-coded parameters are notdata membersof
the class and, therefore, they do not show up in Fig.2.3.

Parameter functions

In many situations, some static object properites need
to be represented by functions instead of scalar param-
eters. An example is the relationships between water
depth and storage volume in a river reach or lake. The
echse basically supports two concepts of functions:

1. Tabulated functions (synonym: lookup tables).

2. Analytical expressions.

Tabulated functions: Lookup tables provide a means
to describe also those functional relations between two
entities which cannot be reasonably captured by an
analytical expression. Although, in many cases, a
piecewise polynomial representation might be possible,
lookup tables offer a more flexible and convenient al-
ternative. Theechse supports tabulated functions as
long they have a single argument only. There is support
for both functions with regular (i. e. equally spaced)
arguments and functions with non-regular arguments.
Like in the case of scalar parameters, two types of
such lookup-based parameter functions may be distin-
guished:

Object-specific parameter functions: This type of
function is object-specific, i. e. an individual
lookup table is assigned to each object (of a par-
ticular class). For example, the rating curve might
be declared as an object-specific parameter func-
tion in a ’gage’ class, since each gage has its own
characteristic rating curve.

Group-specific parameter functions: Such a function
is not associated with an individual object. Instead,
it represents a common function which is accessi-
ble to all objects (of a particular class).

Analytical expressions: If a function can be captured
by a single (or few) analytical expression(s), then it is
typically hard-coded, i. e. the function is defined in the
’simulate’ method of a class. It is then, strictly speak-
ing, not adata memberof the class and, therefore, hard-
coded functions do not show up in Fig.2.3. Hard-coded
analytical functions include, for example, polynomials,
and linear, exponential, or power functions. The advan-
tage of using them is that the function’s return value
may usually be computed more quickly as compared to
table-lookup.

2.2 Features (members) of a class 17

A typical case of an analytical function that one
would hard-code is the Magnus-Formula, which is is
an empirical expression relating the air’s maximum hu-
midity to air temperature. It is an example of a function
which isnot object-specific since it is practically appli-
cable everywhere on earth.

However, it is quite straightforward to make hard-
coded functions object-specific. This is simply
achieved by passing the coefficients of analytical ex-
pressions via the functions interface and to define those
coefficients as object-specificscalar parameters. For
example, a rating curve may sometimes be expressed
by a power expression likeQ = a · Hb, with a andb
being empirical coefficients andQ andH representing
discharge and stage, respectively. In such a case, one
may declarea andb as object-specificscalar parame-
ters in a ’gage’ class to let each gages have its individual
rating curve.

Note that hard-coded analytical functions provide the
only way of implementing functions that take multi-
ple variable arguments (multi-dimensional functions).
This is due to the fact that there is currently no support
for multi-dimensional table lookup. In some situations,
however, it may be possible to split a multi-dimensional
function into several single-argument functions which
may then be represented by lookup tables.

2.2.5 Output variables

To make information about an object visible to (and us-
able for) its environment,output variablesmust be de-
clared in the respective class. In particular, output vari-
ables have to be declared in a class for all data, which

• should to be passed from an object of that class to
another simulated object.

• are of interest to the modeler and should (poten-
tially) be available in the output files.

In a hydrological catchment model, for example,
a ’catchment’ class might have an output variable
’runoff’. Then, the values of that variable may serve as
an input to an object of class ’reach’, for example, pro-
vided that a correspondingsimulated inputvariable (see
Sec.2.2.3) exists in the ’reach’ class. Furthermore, the
existance of the output variable ’runoff’ allows for writ-
ing the computed runoff for user-selected catchments to
the respective output files.

In each class, at least a single output variable should
be defined because objects of that class are otherwise

useless. Typically, output variables are used to retrieve
information on

• state variables.

• flux rates, such as time-step averages of energy or
mass fluxes.

However, there are practically no limitations, i. e. any
scalar value which is computed (or which is accessible)
in the ’simulate’ method of a class (see Sec.2.2.6) can
be assigned to an output variable.

2.2.6 The ’simulate’ method

Purpose and interface

The ’simulate’ method of a class represents the class’
most important member function which needs to be de-
fined by the model developer.

The purpose of the ’simulate’ method is to simulate
the evolution of an object over a period of length∆t.
This is usually equivalent to solving a so-calledinitial
value problemwhich means that

1. the values of the object’sn state variables at an
initial time t0 are known.

2. the values at timet0 + ∆t are to be computed by
integratingn ordinary differential equations (one
ODE per state variable).

Thus, the ’simulate’ method usually implements a so-
lution of the initial value problem. The ordinary differ-
ential equations (ODEs) to be solved are specific for
each class and they typically describe either a mass or
energy balance (see example in Sec.2.4). Whether the
integration can be performed using simple approaches
(such as a first order Euler method) or whether sophis-
ticated ODE solvers (see e. g.Press et al., 2002) are re-
quired, depends on the specific problem. In addition to
the updating of state variables, the ’simulation’ method
is responsible for calculating all auxiliary numeric data,
which are of interest to the model user, i. e. model out-
puts (see Sec.2.2.5).

In C++ notation, the interface of the ’simulate’
method looks like

.simulate(const unsigned int delta_t)

wheredelta_t is the function’s (only) argument. It
is of type unsigned integer and represents the simulation
time step in seconds. Note that no other information are
passed via the function’s argument list.

18 Chapter 2 Basic concepts

Class-specific behavior

The leading dot in the function’s name (see interface
above) indicates that this function is a class member.
Formally speaking, it is avirtual member of theab-
stract class ’abstractObject’ describing a generic ob-
ject (Fig.2.4). The child classes describing a specific
type of (usually real-world) objects are derived from
that abstract parent class. Through the mechanisms of
inheritance, each child class automatically has a ’sim-
ulate’ method with the interface shown above. Al-
though the function’s name is the same, the interior of
the method isclass-specific, since the implementation
is only present in the child classes but not in the base
class (Fig.2.4). This makes it possible to use identical
calls like

reservoir_xy.simulate(3600)

catchment_288.simulate(3600)

to trigger the simulation of two objects, which are
instances ofdifferentclasses (a ’reservoir’ and a ’catch-
ment’, in this example). The appropriate code for each
object is selected automatically at run-time, based on
the type information.

Access to an object’s data

As mentioned earlier, the time stepdelta_t is the
only information passed to the ’simulate’ method via
the argument list. All object-related data, such as the
values of parameters, inputs, and state variables, are
available through class methods. These methods, which
may also be calleddata access methods, are summa-
rized in Tables2.1and2.2.

The read-only methods (Table2.1) are intended for
retrieving information. They can appear at the right-
hand side of assignments and the methods with a
scalar result type may be used in mathematical ex-
pressions or comparisons just like normal variables of
type double. The method for retrieving the val-
ues of a vector state variable does not return a scalar
result but a constant reference to a numeric vector
(const vector <double> &). Note that it de-
pends on theusageof the return value whether a copy
of the retrieved data is generated or not. This is impor-
tant in terms of computational efficiency if the vectors
are large size. To avoid the creation of a copy, you have
to use the returned value to initialize a const reference.
In C++, this would look like

const vector <double> & = stateVect(name);

wherename is the name of the respective vector state
variable. If you assign the return value to a ’normal’
variable, i. e. a non-constant numeric vector which is
not a reference, using

vector <double> = stateVect(name);

a copy of the data will be created. Note that this dis-
tinction is also relevant when passing the vector to a
function via the function’s argument list. Since you of-
ten want to pass a constant reference instead of a copy
of the values, the dummy argument should be declared
accordingly.

The purpose of the write-only methods (Table2.2) is
to assign new values to an object’s state or output vari-
ables (see example in Sec.2.4). The write-only meth-
ods all return non-const references to scalars or vectors.
These methods typically appear at the left-hand side of
assignment statements. They may also be used as ac-
tual parameters in function calls, if the corresponding
template parameter is a non-const reference of the ap-
propriate type (i. e. the parameter represents an output
of the function).

Mandatory actions

According to the purpose of the ’simulate’ method (see
above), there is a minimum set of statements that should
be present in this method for every class (see example
in Sec.2.4). In particular, the method should contain

1. statements to update the values of all state vari-
ables using the method(s) from row 1 & 2 of Ta-
ble 2.2. As discussed earlier, this usually means
that ordinary differential equations are solved (see
also Sec.2.2.7).

2. statements to set the values of all output variables
(see last row of Table2.2).

2.2.7 The ’derivsScal’ method

As described in Sec.2.2.6, the purpose of the ’simulate’
method is usually to integrate a single (or a set of) or-
dinary differential equation(s) over time. In some situa-
tions, the use of a simple first-order approximation (Eu-
ler’s method) may be sufficient. Such methods, how-
ever, are neither accurate nor stable. If more accurate
and stable solutions are needed, an ODE solver must be
used which yields higher-order estimates and automati-
cally adjusts the size of time (sub)steps.

2.2 Features (members) of a class 19

// Abstract base class (generic object class)
class abstractObject {

// The virtual ’simulate’ method remains unimplemented here
virtual void simulate(const unsigned int delta_t)= 0;
// ... more data/function members ...

};

// A ’reservoir’ class (child of ’abstractObject’)
class object_reservoir: public abstractObject {

void simulate(const unsigned int delta_t) {
// ... Reservoir-specific implementation of ’simulate’ ...

}
};

// A ’catchment’ class (child of ’abstractObject’)
class object_catchment: public abstractObject {

void simulate(const unsigned int delta_t) {
// ... Catchment-specific implementation of ’simulate’ ...

}
};

Figure 2.4: Specification of the ’simulate’ methods in the abstract baseclass (parent class) and the application-specific child
classes. Only relevant parts of the C++ code of the classes are shown.

Theechse comes with a built-in ODE solver based
on the 5-th order Runge-Kutta method described in
Press et al.(2002). This is a quite robust algorithm.
However, its applicability is restricted tonon-stiff sys-
tems of simultaneous ODE. This may be relevant if the
number of state variables of an object is > 1.

As with all ODE solvers, one must pass a method to
the solver which computes the derivatives of the state
variables (with respect to time, here). The name of the
corresponding class method is ’derivsScal’. Like ’sim-
ulate’, it is a virtual method. As the method’s name
indicates, it computes the derivatives of the scalar state
variables only (see Sec.2.2.2). ODE solver support for
vector state variables is currently not implemented.

The interface of the ’derivsScal’ method is shown in
Fig. 2.8. The meaning of the dummy arguments is as
follows:

t This scalarinput argument represents the
time. It is only relevant when simulating
non-autonomoussystems, i. e. if the value(s)
of the derivative(s) are time-depend. Note
that this is only the case, if the forcings are
variable within a time step. In many models,
the forcings are treated as constant within a
time step and the value oft is not used in
computing the derivatives.

u Input vector holding the values of the state
variables whose derivatives are to be com-
puted.

dtdt Output vector, containing the derivatives
corresponding to the state variables inu.

delta_t Input value, representing the length of the
simulation time step. The intention of this
argument is to allow for unit conversions.
For example, external forcings (precipita-
tion, radiation) may be given as sum values
for a time step (mm/time step or J/m2/time
step, for example). When computing the
derivatives, such values need to be converted
into rates (m/s or W/m2, for example) using
the value ofdelta_t.

20 Chapter 2 Basic concepts

Table 2.1: Data access methods, part I: Read-only methods. The dummy argumentname, has to be substituted by the name of
the particular variable, parameter, or function to be accessed. The names are defined by the model developer. Note that names
must not be quoted since they do not represent strings but (automatically defined) index constant. For the dummy argument
arg, a numeric expression representing the function’s argument has to be supplied.

Type of feature Call Result type

Scalar state variable stateScal(name) double

Vector of scalar
state variables

stateScal_all() const vector <double> &

Vector state variable stateVect(name) const vector <double> &

External input inputExt(name) double

Simulated input inputSim(name) double

Parameter function
(object-specific)

paramFun(name, arg) double

Scalar parameter
(object-specific)

paramNum(name) double

Parameter function
(group-specific)

sharedParamFun(name, arg) double

Scalar parameter
(group-specific)

sharedParamNum(name) double

Table 2.2: Data access methods, part II: Write-only methods. See Table2.1for details on the methods’name argument.

Type of feature Call Assigned type

Scalar state variable set_stateScal(name) double &

Vector of scalar state variables set_stateScal_all() vector <double> &

Vector state variable set_stateVect(name) vector <double> &

Output variable set_output(name) double &

In order to actually use this method, the code for
computing the derivatives needs to provided in a sep-
arate file (see#include directive in the ’derivsScal’
method in Fig.2.8). This file must contain code which
assigns a value to all elements of vectordudt. At the
right hand side of these assignments, one can use the
access functions listed in Table2.1 with oneimportant
exception: Onecannotcall the functionstateScal
to access the value(s) of scalar state variable(s)! In-
stead, one must use the respective element of the input
vectoru (appropriate constants for accessing a particu-
lar element are provided in the generated class header).
This is because of the fact that the ODE solver inter-
nally computes derivatives for various estimates of the
state variables’ values. These estimates are passed in
vectoru. Note that the body of the ’derivsScal’ method

can remain empty if there is no need for it (because the
ODE(s) can be solved analytically, for example).

See Sec.2.4.4for an example showing an implemen-
tation of the ’derivsScal’ method and the use of the
built-in ODE solver in the ’simulate’ method.

2.3 Automatic code generation

2.3.1 Role of generated code in theechse
framework

As stated in Chap.1, theechse is a generic model-
ing framework. As such, it consists of a generic, re-
usable model core complemented by problem-specific
extensions. The generic model core provides basic in-
frastructure forany dynamic simulation model. The

2.3 Automatic code generation 21

Figure 2.5: Major components of theechse modeling
framework.

problem-specific extensions are required to build sim-
ulation models for a particular (type of) system.

In the case of theechse modeling framework,
problem-specific extensions are equivalent to user-
defined classes with the features described in Sec.2.2.
The relation between the generic model core and the
problem-specific extensions is illustrated in Fig.2.5.

To sucessfully build a simulation model with the
echse framework, the problem-specific part of the
source code (class definitions) must be perfectly com-
patible with the generic model core on the one hand.
On the other hand, good practice of software devel-
opment requires that the generic core and the problem
specific extensions are well separated. In fact, a de-
veloper who implements the problem-specific classes
should not need to understand or even know any details
of the generic core.

In theechse modeling framework, this dilemma is
solved by means of automatic source code generation
(Fig. 2.5). In this concept, the model developer firstde-
claresa class by specifying the names and types of all
data members (see Fig.2.3for possible member types).
In a second step, a program automatically generates the
class’ basic source code from the provided declaration.
This generated code is guaranteed to be compatible with
the generic core. It provides entry points for additional
source code which has to be manually written in a third
step. This manually written code comprises the bod-
ies of the ’simulate’ and the ’derivsScal’ methods (see
Sections2.2.6and2.2.7).

The three steps of

1. Declaration of data members

2. Code generation

3. Implementation of methods

are illustrated in Sec.2.4 with the example of a linear
reservoir class.

The advantages of the strategy of automatic code
generation can be summarized as follows:

• The model developer does not need to manually
write all the abstract code related to the classes and
the corresponding object groups (recall Sec.2.1.4).
This reduces development times for new models.

• The model developer does not need to care for the
compatibility of the application-specific code with
the code forming the generic core of anyechse
model. This makes model development really a
simple and save task.

2.3.2 The code generator

Installation

The code generator is currently implemented in the
R programming language. It is contained in the R-
packagecodegen which provides a single method
whose name isgenerate. The package is provided as
a tarball with namecodegen_x.y.tar.gz where
x.y is a version number. SeeKneis(2012) for details on
how to install the R software and add-on packages. The
codegen package depends on no other packages.

Standard documentation

After thecodegen package has been loaded, for ex-
ample using the R command

library("codegen")

the documentation of thegenerate method can be
displayed by typing the question mark followed by the
method’s name.

?generate

Examples

To run an illustrative example, one can use the follow-
ing R command.

example("generate")

22 Chapter 2 Basic concepts

It generates sample input files for thegenerate
method and then runs the method on these files. An-
other practical example, can be found in Sec.2.4.

2.3.3 Inputs of the code generator

The code generator assumes that each class is declared
in aseparatefile. Such a class declaration file must be a
plain, TAB-separated text file with two columns ’type’
and ’name’ (see Fig.2.7 for an example). Each record
in this table declares a single data member of the class.
The meaning of the two columns is as follows:

type (string) The type of the feature to be declared.
Valid entries are listed in Table2.3.

name (string) The name of the variable, parameter, or
function to be declared. The name must be a valid
C++ identifier.

In addition to these two mandatory columns, the table
may have additional columns which are ignored during
processing by the code generator. For the purpose of
documentation, it is recommended to append at least
one column with a short description of each feature and
probably the physical units. Moreover, the file may con-
tain comment lines starting with the# character (see ex-
ample in Fig.2.7). It may be convenient to prepare the
table in a spreadsheet software first and to save the con-
tents to a text file later (by copy & paste, for example).

Table 2.3: Description of the keywords expected in the ’type’
column of a class declaration table (see example in Fig.2.7).

Keyword Type of feature

stateScal Scalar state variable

stateVect Vector state variable

inputExt External input variable

inputSim Simulated input variable

paramNum Object-specific scalar pa-
rameter

sharedParamNum Group-specific scalar pa-
rameter

paramFun Object-specific parameter
function

sharedParamFun Group-specific parameter
function

output Output variable

2.3.4 Outputs of the code generator

The code generator produces several C++ header files
(file extension ’.h’). The individual files are only briefly
described here. The files’ contents is not shown.

Instantiation function definition fileThis file contains a
function which, when called, creates a single in-
stance of each object group based on class tem-
plate. The function returns a handle to the object
groups (in the form of a pointer vector).

Header bundle fileThis file contains C++ include
statements, referencing all header files created
by the code generator, except for the file it-
self. This provides a means to include a variable
(application-specific) number of header files into
the generic source files without the need for any
modification there.

Class header file(s)For each class declared by the
model developer, a header file is generated. It de-
scribes the abstract prototype of an object of the re-
spective class. Note that the implementation of the
class’ methods ’simulate’ or ’derivsScal’ arenot
contained here. Instead, references to include files
are generated and these include files must be man-
ually filled with code by the model developer.

Index constants file(s)For each class declared by the
model developer, a file with index constants is cre-
ated. These index constants must be used when
querying or manipulating an object’s data via the
methods described in Tables2.1and2.2. The auto-
matically defined constants allow for referencing a
particular variable, parameter, or functionby name
(see the ’name’ argument in Table2.1and the ex-
amples in Sec.2.4.4). This makes data access con-
venient, efficient, and save at the same time.

2.4 Example: Implementing a new
class

2.4.1 Linear reservoir

In this example, we implement a class describing a so-
called ’single linear reservoir’. The linear reservoir is a
widely used conceptual model in the field of hydrology.
Applications range from describing the storage of water
in catchments to flow routing in rivers. A single linear
reservoir (Fig.2.6) is fully described by two equations:

2.4 Example: Implementing a new class 23

the continuity equation represenring the mass balance
(Eqn.2.1) and the linear outflow equation (Eqn.2.2).

dv

dt
= qin − qex (2.1)

qex =
1

k
· v (2.2)

The symbols in the above equations are defined be-
low where L and T are generic units of length and time,
respectively.

v Storage volume (L3)

qin Rate of inflow (L3/T)

qex Rate of outflow (L3/T)

k Retention constant (T)

Figure 2.6: Sketch of a single linear reservoir.

The ordinary differential equation that results from
combining Eqns.2.1and2.2can be solved analytically.
With the simplest assumption of a constant inflow rate
qin over a time step of length∆t the integration yields
Eqn.2.3, wherev(t0) is the initial storage at timet0.

v(t0+∆t) = (v(t0)− qin · k)·e(−∆t/k)+qin ·k (2.3)

Using Eqn.2.2 one can also transform Eqn.2.3 into
an expression for the outflow rateqex (Eqn.2.4).

qex(t0+∆t) = (qex(t0)− qin) ·e
(−∆t/k)+qin (2.4)

2.4.2 Step 1: Declaration of the class

To declare a new class, the model developer sim-
ply needs to specify the class’data members(recall
Sec.2.2.1). With respect to the example of the linear
reservoir (Sec.2.4.1), one would have to declare

• a single scalar state variable (storage volumev).

• a single scalar parameter (retention constantk).
We assume here that this parameter is object-
specific, i. e. each linear reservoir has an individ-
ualk.

• a single input variable (inflow rateqin). We as-
sume here that this is a simulated input rather than
an external input (recall Sec.2.2.3).

• a single output variable (outflow rateqex)

As described in Sec.2.3.3, this information has to be
collected in a table-formatted text file for later process-
ing by the code generator (Sec.2.4.3). An appropriate
input file for the code generator is shown in Fig.2.7.

Declaration of a
linear reservoir class

type name

stateScal v
paramNum k
inputSim q_in
output q_ex

Figure 2.7: Input file for the code generator, containing the
declaration of a linear reservoir class. See Table2.3 for the
entries allowed in the ’type’ column.

2.4.3 Step 2: Code generation

Once all data members of all classes have been declared
in the required form (see Sec.2.3.3and Fig.2.7), the
table is further processed by the code generator. As-
suming that the contents of Fig.2.7 is saved in a file
’linRes.txt’, an appropriate call to the code generator
could be:

library("codegen")
generate(
files=c(linReserv="linRes.txt"),
outdir="generated_code"
overwrite=TRUE

)

Note that the vector of class declaration files passed
to thefiles argument must have as many elements as
there are classes in the model. In our minimum exam-
ple with only a single class, this vector is of lenght 1.
Also note that this must be anamedvector because the
class’ names are generated from the elements’ names.
Thus, the name for the linear reservoir class would be
’linReserv’ in the above example.

The complete output from the above call to the
generate method is not presented here. An an

24 Chapter 2 Basic concepts

overview of the created files was already given in
Sec.2.3.4and a central part of the generated code is
shown in Fig.2.8.

2.4.4 Step 3: Implementing the class’
methods

As mentioned in Sections2.3.1 and 2.3.4, the imple-
mentation (i. e. the body code) of the ’simulate’ and
’derivsScal’ methods has to be provided by the model
developer. The code generator only creates appropriate
method interfaces and include statements. For the lin-
ear reservoir class introduced in Sec.2.4.1, part of the
generated code is shown in Fig.2.8.

Two complete, alternative bodys of the ’simulate’
and ’derivsScal’ methods of the linear reservoir class
are presented in Fig.2.9 & 2.10. This is the code
which would be imported by the#include directives
in Fig. 2.8.

2.4.5 Step 4: Compilation

Once the code generator has run successfully and the
methods for all classes are implemented, the applica-
tion specific simulation software (i. e. the ’model en-
gine’) has to be build. This is achieved by compiling
and linking all parts of the source code, namely

1. the static part of the code, providing the basic in-
frastructure for every model.

2. the application-specific code created by the code
generator (see Sec.2.4.3).

3. the body code of the ’simulate’ and ’derivsScal’
methods, manually written by the model devel-
oper.

The GNU C++ compiler is used for this purpose and
the procedure has been successfully tested on several
platforms. To assist the developer in the compilation
process, platform-specific makefiles are available.

If invalid code is detected in the manually written
parts of the code, the compilation will fail, of course
and one has to go through the usual steps of debugging.
One should keep in mind, however, that a successful
compilation does not necessarily mean that the code is
’correct’ in the sense that it produces the desired results.
The correctness of the code can only be verified by an-
alyzing the model’s output.

2.4 Example: Implementing a new class 25

1

2 // ----- Frames of method implementations follow -----
3

4 // Import auxiliary definitions to be used in ’simulate’ and ’derivsScal’
5 #include "userCode_linReserv_aux.cpp"
6

7 // The ’simulate’ method
8 namespace object_linReserv_simulate {
9 static const T_index_paramNum k= {0};

10 static const T_index_inputSim q_in= {0};
11 static const T_index_stateScal v= {0};
12 static const T_index_output q_ex= {0};
13 }
14 void object_linReserv::simulate(const unsigned int delta_t) {
15 using namespace object_linReserv_simulate;
16 try {
17 #include "userCode_linReserv_simulate.cpp"
18 } catch (except) {
19 stringstream errmsg;
20 errmsg << "Simulation failed for time step of length " << delta_t << ".";
21 except e(__PRETTY_FUNCTION__,errmsg,__FILE__,__LINE__);
22 throw(e);
23 }
24 }
25

26 // The ’derivsScal’ method
27 namespace object_linReserv_derivsScal {
28 static const T_index_paramNum k= {0};
29 static const T_index_inputSim q_in= {0};
30 static const unsigned int INDEX_v= 0; // for use with vectors u & dudt
31 static const T_index_output q_ex= {0};
32 }
33 void object_linReserv::derivsScal(const double t,
34 const vector<double> &u, vector<double> &dudt, const unsigned int delta_t) {
35 using namespace object_linReserv_derivsScal;
36 try {
37 #include "userCode_linReserv_derivsScal.cpp"
38 } catch (except) {
39 stringstream errmsg, data;
40 for (unsigned int i=0; i<u.size(); i++) data << u[i] << " ";
41 errmsg << "Calculation of derivatives failed (Time: " << t << " Number" <<
42 " of deriv.s: " << dudt.size() << " Value(s) of state(s): " << data <<
43 " Length of time step: " << delta_t << ").";
44 except e(__PRETTY_FUNCTION__,errmsg,__FILE__,__LINE__);
45 throw(e);
46 }
47 }
48

49 #endif

Figure 2.8: Part of the generated header file for the linear reservoir class showing the frame of the ’simulate’ and ’derivsScal’
methods. The manually written code is imported by the#include directives.

26 Chapter 2 Basic concepts

File ’userCode_linReserv_aux.cpp’

1 // Empty file

File ’userCode_linReserv_simulate.cpp’

1 // Compute the new value of the state variable (v) at the end of the time
2 // step. We save the value in a temporary variable instead of updating v.
3 // This is because we still need the initial value in the next statement.
4 double v_new= (stateScal(v) - inputSim(q_in) * paramNum(k)) *
5 exp(- delta_t / paramNum(k));
6

7 // Update the output variable (q_ex). We use the reservoir’s mass balance
8 // to compute the time-step averaged outflow rate. Alternatively, we could
9 // simply return the instantaneous value at the end of the time step.

10 set_output(q_ex)= inputSim(q_in) - (v_new - stateScal(v)) / delta_t;
11

12 // We can now update v (since the initial value is no longer needed).
13 set_stateScal(v)= v_new;

File ’userCode_linReserv_derivsScal.cpp’

1 except e(__PRETTY_FUNCTION__,"Method not implemented.",__FILE__,__LINE__);
2 throw(e);

Figure 2.9: Bodies of the ’simulate’ and ’derivsScal’ methods for the linear reservoir class if an analytical solution is adopted.

2.4 Example: Implementing a new class 27

File ’userCode_linReserv_aux.cpp’

1 // Empty file

File ’userCode_linReserv_simulate.cpp’

1 // Save initial volume for use mass balance
2 double v_ini= stateScal(v);
3

4 // Compute new value of v using the built-in ODE solver with arg.s 1--6
5 odesolve_nonstiff(
6 stateScal_all(), // 1: Initial value(s) of state variable(s)
7 delta_t, // 2: Lenght of time step
8 1.e-08, // 3: Accuracy (adjustable)
9 1000, // 4: Max. number of sub-steps (adjustable)

10 this, // 5: Pointer to active object
11 set_stateScal_all()); // 6: New value(s) of state variable(s)
12

13 // Set q_ex using the mass balance
14 set_output(q_ex)= inputSim(q_in) - (stateScal(v) - v_ini) / delta_t;

File ’userCode_linReserv_derivsScal.cpp’

1 // Characteristic ODE of the lineare reservoir
2 dudt[INDEX_v]= inputSim(q_in) - u[INDEX_v] / paramNum(k);

Figure 2.10: Bodies of the ’simulate’ and ’derivsScal’ methods for the linear reservoir class if a numerical solution is adopted.
Note that the value of the volume state variable (v) in the ’derivsScal’method is accessed viau[INDEX_v] instead of
stateScal(v).

28 Chapter 2 Basic concepts

2.5 Outline of computational steps

2.5.1 Overview

The essential computational steps carried out when ex-
ecuting a model are summarized in Fig.2.11. Note that
this outline applies toanymodel built with theechse
simulation environment.

Main function

• Retrieval of command line arguments (Sec.3.1)

• Reading of the configuration file (Sec.3.4)

• Instantiation of objects & object groups (see
Fig. 2.2)

• Initialization of the objects’ data.

Loop over time steps

• Updating of external inputs

Loop over objects

• Call of the ’simulate’ method for
current object

• Writing of data to output files

• Closing of output files

• Clean-up

• Output of traceback info in case of exceptions

• Setting of return code and termination

Figure 2.11: Essential computational steps of a model run.
The framed boxes represent loops, thus the tasks inside these
boxes are executed repeatedly (see Sec.2.5.2).

Most of the computational steps listed in Fig.2.11ap-
pear in any dynamic systems simulation software. Only
those aspects which are specific toechse models are
discussed in the subsequent sections.

2.5.2 Time and object loop

In Fig. 2.11, the innermost framed box represents the
so-calledobject loop. The purpose of this loop to iter-
ate through all objects and trigger the simulation for a

single time step by calling the objects’ ’simulate’ meth-
ods (see Sec.2.2.6). In a spatially distributed model,
the term ’spatial loop’ is often an appropriate synonym
for ’object loop’1.

Note that thetime loopis wrapped around the object
loop (Fig.2.11). This design can be found in virtually
all spatially distributed models that solvepartial differ-
ential equations (PDE) such as groundwater flow mod-
els or hydrodynamic models. Note, however, that a few
models exist where the two loops are in reverse order,
for example in some hydrological catchment models.

The consequence of having the object loopinsidethe
time loop is that, for a particular time step, the ’simu-
late’ method is executed forall objects, before the com-
putation proceeds with the subsequent time step. This
allows for the exchange of information between objects
in every single time step. This is a precondition for
properly handlingfeedbacksbetween objects, i. e. two-
way interactions (see Fig.2.13, Sec.2.6.2).

The only drawback of this approach is the require-
ment of keeping instances ofall objects in memory at
the same time. Thanks to the large memory capacity of
modern computers, this is hardly an issue. If the num-
ber of objects should actually be too large to fit into
memory, a cheap solution would be to split the model
(into spatial sub-domains, for example) in a way that no
feedback between the sub-models does occur.

2.5.3 Exception handling

In a complex and flexible software it is not unlikely
that an unrecoverable error occurs during computations.
The potential causes are manifold, ranging from miss-
ing or erroneous input data to mathematical calculations
yielding invalid results (NaN, Inf, ect.).

The models built with theechse simulation envi-
ronment use C++’s exceptions mechanism to handle sit-
uations like that. Whenever an exception occurs, the
normal execution of the program is suspended and pri-
ority is given to exception handling. In the case of
echsemodels, this means that the currently active unit
(i. e. a class method or function) tries to collect as many
information as possible about the circumstances of the
exception and then gives control back to its calling unit.
The calling unit behaves just like the unit where the ex-
ception originally occurred. In this way, the error sig-
nal is passed through the hierarchy of routines and fi-

1In the current version of the software, the object loop is split into
two nested loops to enable parallel processing. This is not essential
for the understanding for the general understanding, however.

2.6 Interactions between objects 29

nally causes an exception at the highest level, the ’main’
function. Here (and only here), traceback information
is generated and the program is forced to terminate (see
final step in Fig.2.11).

The traceback always contains (for every unit) infor-
mation about

1. the name of the unit, where the exception occurred.

2. a description of the circumstances and possibly the
cause of the exception.

3. the name of the source file containing the unit that
failed.

4. the line of this file where the exception was
thrown.

Based on the traceback information, the location and
cause of the error can usually be identified with little
effort.

If the model terminated due to an exception, the pro-
gram issues a non-zero return code. If no exception oc-
curred, a the code of zero is returned as this is widely
used convention. The return code should always be
checked if the model is embedded in another software
such as a scripts or batch files.

2.6 Interactions between objects

2.6.1 Overview and accessible data

Interactions between objects are a typical in natural and
technical systems. In this context, an interaction is de-
fined as an exchange of either matter (mass), energy, or
information. Although it is possible to simulate just a
single object or a group of non-interacting objects, in-
teractions have to be considered in the vast majority of
real-world models.

As already outlined in Sections2.2.3and 2.2.5, an
interaction between two objects is bound to the declara-
tion of

1. asimulated input variablein the class correspond-
ing to the object thatusesdata provided by another
object.

2. an output variablein the class corresponding to
the object thatprovides the data to be used by
(an)other object(s).

Figure 2.12: Accessible data from a single object’s perspec-
tive.

In a dynamic simulation model with sequential pro-
cessing of the objects (see Sec.2.5.2and Fig.2.11), fur-
ther limitations with respect to the acessibility of data
do exist. This is illustrated in Fig.2.12 from the per-
spective of a single object with respect to a single time
step (bold-framed objectMk). Assuming that appro-
priate simulated input and output variables have been
declared in the respective classes (see above), for the
simulation of time stepi, the objectMk has access to

1. data on the object itself, representing the state at
the end of the previous time step with indexi− 1.

2. the output variables of the already processedup-
streamobjects. These values are representative for
the end of thecurrent time step (i).

3. the output variables of thedownstreamobjects still
waiting for being simulated. These values are rep-
resentative for the end of theprevioustime step
(i− 1).

2.6.2 Types of interactions

Looking at two interacting objects, one generally has
to distinguish betweenfeed-forwardinteractions (also
calledone-wayinteractions) andfeedbacks, also known
astwo-wayinteractions (Fig.2.13). The difference be-
tween the two is illustrated also in Fig.2.14on a very
simple example. Typical real-world examples of feed-
backs in the field of hydrology include

• interactions between river and floodplain. River
stage and groundwater level are coupled via infli-
tration and leakage, respectively.

30 Chapter 2 Basic concepts

Figure 2.13: Basic types of object interaction. The arrows in-
dicate exchange of matter, energy, or information. Left: Feed-
forward type. Right: Feedback type.

Figure 2.14: Types of interactions between two buckets filled
with a liquid.

• diffusion problems at the interface of the pelagic
and benthic zone. The rate of diffusive transport
depends on both, the concentration in the water
body and the sediment’s pore water.

• the operational control of a reservoir’s outflow
based on stream flow data observed at a gage
downstream of the reservoir.

The feedback (Figs.2.13& 2.14, right) represents the
more general type of interaction and, actually, the feed-
forward interaction (Figs.2.13and2.14, left) may be
regarded just as a special type of (missing) feedback.
It makes sense, however, to strictly distinguish between
the two types of interaction in the context of dynamic
simulation, i. e. when modeling the interaction of ob-
jects over a sequence of discrete time steps. This is due
to the following:

Feed-forward typeAs long as the exchange of data be-
tween two interacting objects ’A’ and ’B’ is effec-
tively one-way, the two objects can be simulated
sequentially, i. e. one after another. The so-called
source object(’A’ in Fig. 2.13, left) represents the
’data provider’ and must be simulated first. The
output of ’A’ is then used as an input for thetarget
object(’B’), which is simulated later.

Feedback typeIf there is atwo-wayexchange of data
between two objects ’A’ and ’B’, these objects

must be simulatedsimultaneously, i. e. at the same
time. To put it in other words: The ordinary dif-
ferential equations, describing the evolution of the
state variables in object ’A’ form a coupled system
with the equations of object ’B’. To get a proper
solution, the coupled differential equations must
be integrated simultaneously using an ODE solver
(see e. g.Press et al., 2002). This, however, con-
flicts with the facts that (1) objects are geberally
treated as well-separated entities and (2) the array
of objects is processed sequentially using a fixed
order (see innermost loop in Fig.2.11). Never-
theless,echse-based models are capable of han-
dling feedback interactions using the techniques
outlined in Sec.2.6.3.

2.6.3 Handling of feedbacks

Option 1: Compound classes

A straightforward approach to cope with the problem
of feedback interactions (Sec.2.6.2) is to avoid inter-
object feedbacks. Taking the objects ’A’ and ’B’ from
Fig.2.13(right) as an example, this would mean that the
class(es), of which the objects ’A’ and ’B’ are instances,
are joined to form a new (compound) class. The feed-
back interaction between the former objects ’A’ and
’B’ is then internally present in an object of the com-
pound class. The coupled differential equations related
to all state variables (which were originally distributed
over object ’A’ and ’B’) can then be solved simultane-
ously using a standard ODE solver within the simulate
method (Sec.2.2.6) of the compound class.

The drawback of such an approach is that the com-
pound class may quickly become rather complex. In
extreme cases of many feedback interactions, one might
end up with a model consisting of only a single object
being an instance of a single class which basically in-
tegrates ’everything’. In such a case one should think
about other strategies (see below) or use another, more
appropriate modeling software.

Option 2: Step-wise feedback

The simplest and probably the most common solution
for the feedback problem is to treat the differential
equations in the two interacting objects ’A’ and ’B’ as
temporarily independent. In practice, this works as fol-
lows:

2.6 Interactions between objects 31

Simulation stepThe objects ’A’ and ’B’ are simulated
independendly, as if there was no interaction at all.
This means that the state variables of ’A’ and ’B’
are updated by separately integrating the respec-
tive differential equations.

Feedback stepAfter every time step, the two objects
exchange information about their new states. The
information about ’A’ is then used in the subse-
quent simulation step for ’B’ and vice versa.

To make the described approach ofstep-wise feed-
backsuccessfully work in practice, two conditions must
be met.

Firstly, the interacting objects ’A’ and ’B’ must ex-
change data with a high frequency. This is achieved by
running the simulation in small time steps. The longer
the time step, the higher the potential numerical error
will be.

Secondly, it has to be ensured that the information
about object ’B’ used by ’A’ refers to thesame point
in time as the information about ’A’ used by ’B’. In a
normal sequential simulation, where either ’A’ or ’B’
is processed first, this is not the case. However, with
the help of a so-calledobserver objectit is possible to
supply ’A’ and ’B’ with data of equal up-to-dateness,
in spite of sequential processing. This strategy is illus-
trated by Fig.2.15. In the shown example, a feedback
interactions exists between the objectsMk andMk+1.
The role of the auxiliary observer objectMk−1 is to col-
lect data onMk andMk+1 which is representative for
a particular point in time, namely the (end of) time step
i− 1. The collected information is then supplied toMk

andMk+1, respectively, to be used in the simulation
over the current time stepi.

Step-wise feedback: Time step issues

As mentioned above, the selection of a sufficiently short
time steps is necessary to keep the error associated with
the step-wise handling of feedbacks within acceptable
limits. A disadvantage of the current version of the
echse is that the time step is a fixed parameter. Con-
sequently, if a short time step is selected with the inten-
tion of increasing the accuracy of feedback solutions,
the computation will slow down even for those objects
which are not subject to feedback interactions. Thus,
a single feedback interaction may impact negatively on
the performance of the entire model in terms of com-
putation time. A possible solution to this problem lies
in releasing the constraints of the fixed ’global’ time

Figure 2.15: Use of an artificialobserver objectto provide
two sequentially processed, feedback-coupled objects with in-
formation of equal up-to-dateness.

step. In particular, it would make sense allow a variable
number of sub-steps to be specified for each object. The
only restriction would be that the number of sub-steps
must be identical for two objects having a feedback re-
lation. If a feedback interaction exists between two ob-
jects ’A’ and ’B’ and another one exists between two
objects ’C’ and ’D’, the number sub-steps applied to
the first group (’A’, ’B’) and the second group (’C’, ’D’)
may still be different, however. It is planned to imple-
ment the sub-step approach in an upcoming version of
theechse.

Step-wise feedback: Accuracy

To really understand the limits of the strategy of a step-
wise simulation of feedbacks, a closer look on the so-
lution strategy is required. Let’s take the example of
Fig. 2.15, where a feedback interaction between the ob-
jectsMk andMk+1 is simulated under the control of
an observer objectMk−1. In a first step, the observer
objectMk−1 collects information from both objectMk

andMk+1 which is representative for time stepi − 1.
If the objectsMk andMk+1 were the two connected
buckets shown in the right column of Fig.2.14, the
observerMk−1 would collect information on the wa-
ter levels in the two buckets and compute the result-
ing flow rate. Then, the two objectsMk andMk+1

would retrieve the computed flow rate from the observer
and both objects would use this information to calculate
their individual water levels at the end of time stepi.

It is important to realize that the accuracy of the re-
sulting solution is limited by the fact that the informa-
tion on the flow rate between the two buckets is a con-

32 Chapter 2 Basic concepts

tant. This rate effectively represents the sitution at the
end of time stepi−1 or (in other words) the situation at
thevery beginningof time stepi. This constantinfor-
mation is then used in the simulation of theentire time
stepi, neglecting that the water levels change, hereby
affecting the flow rate.

Solutions with these characteristics are also called
Euler solutions. It is well known that the accuracy of
such first-order solutions is quite limited. Therefore,
with the current version of theechse a reasonable sim-
ulation of feedbacks can only be expected if

• non-linearities are weak.

• the chosen simulation time step is sufficiently
short.

A straighforward method to examine the accuracy
of the simulation of feedback interactions is to simply
run the model with different time steps and to compare
the results for the affected objects. It is possible that
support for higher-order solutions (Heun, Runge-Kutta,
etc.) and/or methods of automatic time step control will
be implemented in a future version of theechse.

2.6.4 Conservation of mass or energy

As explained earlier, information is not continuously
exchanged between interacting objects but only after
discrete time steps. This is true for both feed-forward
and feedback interactions. In the usual case of non-
linear dynamics, it is quite important to understand the
consequences with respect to the loss of accuracy and
regarding the conservation of mass or energy in partic-
ular.

Recall the example of the two separate buckets
shown at the left side of Fig.2.14. In this feed-forward
interaction, the bucket at the bottom receives inflow
from the other bucket. If we assume that the upper
bucket has the characteristics of a linear reservoir (see
Sec.2.4.1) we known from Eqn.2.4 (page23) that the
outflow is anon-linear (exponential) function of time
(Fig. 2.16).

Recalling Sec.2.2.5, we know that all information
about the upstream bucket’s outflow needs to be passed
to the downstream bucket through output variables. Of-
ten, the crux for the model developer is to define the
output variables in way that

1. the information on the dynamics is retained.

2. mass (or energy) is conserved.

Figure 2.16: Example outflowq from a linear reservoir within
a discrete modeling time step of length∆t.

Unfortunately, these two goals cannot be achieved at
the same time and one needs to set a priority. Based on
the example from Fig.2.16, some possible options are
discussed in the following.

Boundary values

A simple solution would be to pass the values at time
step boundaries through two output variables:

• The flow rate at the beginning of the time step
q(t0).

• The flow rate at the end of the time stepq(t0+∆t).

In this way, at least the information on the change of
the flow rate within the time step is retained. However,
the information on the actual non-linearity is lost. Con-
sequently, the information on the true cumulated out-
flow, i. e. the exchanged volume, is lost too.

’Improper’ average

Another option would be to pass only an average out-
flow rate computed as the arithmetic mean ofq(t0) and
q(t0 + ∆t). In most cases, this is not recommended,
because neither of the two above-mentioned goals is
met. Firsty, the information on the dynamics is com-
pletely lost. Secondly, use of the average value as de-
fined above results in a mass balance error if the true
dynamics isnon-linear. This is true in the example
(Fig. 2.16) as well as in most real-world situations.

Intermediate values

With this strategy, information on the outflow at inter-
mediate times is passed. For example, one could pass
the 3 valuesq(t0), q(t0+1/2∆t), q(t0+∆t). Then, the
downstream bucket could try to re-construct the non-
linear dynamics, for examply by fitting an interpolation
functiong(t) to the three values.

2.6 Interactions between objects 33

Interpolation parameters

This is just a special case of the afore-mentioned op-
tion. In this case, one does not pass the outflow rates
at intermediate times. Instead, the parameters of the in-
terpolation functiong(t) are passed. Depending on the
specific case and the type of the interpolation function,
this may reduce the number of necessary output vari-
ables.

’Proper’ time-step average

If the priority is on conservation of mass, one needs
to pass aproper average outflow rateqout from the
upstream to the downstream bucket. The two above-
mentioned approaches allow for the calculation of an
approximate average outflow rate as

qout ≈
1

∆t

∫ t0+∆t

t0

g(t)

with g(t) being the interpolation function. To make
this work in practice, the interpolation functiong(t)
must be integratable and allow for a reasonable fit of
the dynamics.

Another strategy which is often more straightforward
is based on a discrete mass balance for the upstream
bucket. Denoting the volume of the upstream bucket as
v and assuming aconstantinflow rateqin, the time-step
averaged outflow rateqout is

qout = qin −
v(t0 +∆t)− v(t0)

∆t

The approach remains applicable even if more input
or loss terms appear in the bucket’s mass balance. It is
not even necessary that these terms are constant over the
time step of length∆t, but then, their cumulated values
(integrals over∆t) must be known. In practice, these
integral values can be obtained by introducing auxiliary
state variables representing the cumulated inputs and/or
losses. These auxiliary state variables can be initialized
with zero at the begin of each time step.

Combined approaches

In some cases, it may be favourable to combine some
of the approaches discussed above. For example, one
could pass the values at the time-step boundaries as well
as the proper time-step average value. In this way, the

loss of information at the interface between the interact-
ing objects is minimized.

34 Chapter 2 Basic concepts

Chapter 3

Input of echse-based models

3.1 Mandatory command line ar-
guments

Some basic settings are passed to the model via the
command line. Each of these settings is identified by
a unique keyword. The keyword must be followed by
the equal sign ’=’, followed by a corresponding value.
There must be no spaces before or after the equal sign.
The expected keyword-value pairs are summarized in
Table3.1. They may appear at the command line in any
order. In addition to these mandatory arguments, fur-
ther configuration data may be passed via the command
line (see Sec.3.4).

A typical call of the model in a shell script using only
the mandatory arguments might look as follows:
model file_control=config.txt

file_log=log.txt file_err=err.html
format_err=html silent=false

3.2 General notes on file formats

All input files comply with a simple quasi-standard and
can easily be created automatically (by scripts or any
spreadsheet software). For small projects, the files can
even be created manually using just a text editor. The
general rules applying to all input files are as follows:

Tabular format All input files actually represent tables.
The number of columns varies from file to file and
the number of rows (records) depends generally on
the particular application. The number of columns
must be consistent for all records. The tables are
in plain text format.

Column separatorThe table columns are separated by
a reserved character which has to be specified

in the configuration file (see Sec.3.4). Recom-
mended choices are the TAB-character (ASCII
code 9), and/or the blank character, or the semi-
colon (quasi-standards). As an exception to the
above, the column separator used in the configu-
ration file is the equal sign (’=’) and it cannot be
altered by the user.

Table headerThe first non-blank, non-comment line of
a file is interpreted as the table header contaning
column names. Tables without header are not sup-
ported.

Character setAn input file should contain nothing but
ASCII characters. Other characters may or may
not be interpreted correctly (to be tested).

Comment linesComment character(s) have to be be
specified in the configuration file (see Sec.3.4).
A line starting with one of the selected comment
characters is ignored when reading the table.

Blank lines Blank lines are ignored when reading the
table, just like comment lines.

Platform independencyLine endings may be system
specific. On Linux/unix, the standard is\n. On
Windows, it is \r\n. Input files prepared for
Linux usually also work on Windows and vice-
versa (to be tested). The line endings in the output
files depend on the platform on which the model is
running (see standards above).

Order of columnsWith one exception, the columns of
a table can be in any order (since they are identi-
fied by the columns’ names). The only exception
are time series data files (see Sec.3.8.2), where the

35

36 Chapter 3 Input of echse-based models

Table 3.1: Mandatory command line arguments of a model.

Keyword Data type Description

file_control string Name/path of the configuration file. This file containsall configuration
data (except for those data specified as additional command line argu-
ments). The configuration data are discussed in detail in Sec. 3.4.

file_log string Name/path of the log file created during a model run. The log file con-
tains a compact documentation of all major steps of processing. Its
contents is usually inspected in the case of abnormal program termina-
tion.

file_err string Name/path of a file where traceback information should be written to.
This file will only be generated if the model terminates afteroccurrence
of an exception. In the vast majority of cases, the information found in
this file will help to quickly identify what caused the exception.

format_err string This option controls the format used in the file specified asfile_err.
The supported codes currently include ’xml’, ’html’, and ’txt’. For
visual inspection, the html-format is the preferred choice. The other
formats are more useful for automatic extraction of information (if the
model is running in a more complex software environment, forexam-
ple). If an unsupported format code is supplied, the ’txt’ format will be
used.

silent logical The model sends basic messages about the current state of processing
to standard output (usually the screen) ifsilent=false. This kind
of output may be suppressed by settingsilent=true.

3.4 Configuration data 37

time information must be in the first column. Sub-
sequent columns (containing data values for differ-
ent locations or variables) may be in any order.

Column typesThe supported data types of a column
are: string, integer, numeric, logical, and date-
time. For numerical values the usual f-format (0.1)
or the scientific e-format (1.e-01) may be used.
Valid logical values areTRUE andFALSE (not case-
sensitive). Datetime values must be strings in
ISO 8601 format, i.e. in formatYYYY-MM-DD
hh:mm:ss. Date and time must be separated by
a single character (recommended is a blank).

File namesSome tables contain references to other
files. A file name can be specified using either the
absolute or relative path.

Empty tablesThere are no optional input files, which
means that all files must exist and must be read-
able, even if they are not required for a particular
application. Even if there is no information to be
filled in, you cannot just supply an empty file. In-
stead you must supply a proper table with the usual
header line and (at least) one record of values. The
values may (and should be) dummy values that
are easily identified as dummies. This procedure
may seem overly complicated at first but, in fact,
it avoids many other problems (tests in the source
code, documentation of optional files, etc.).

3.3 Units of variables and con-
stants

There is no general convention, i. e. arbitrary units may
be used for all constants and variables. The only impor-
tant facts are:

• The units of all variables and constants used in any
equations must be consistent. There are no (and
cannot be) any built-in checks in the generic part
of the source code.

• The length of a modeling time step passed to the
classes’ simulate methods as argumentdelta_t
is given in units of seconds.

3.4 Configuration data

3.4.1 Alternative ways of passing config
data

The configuration data comprise all information about
a specific model run. This includes, for example, set-
tings like the start and end time of the simulation or the
names of the various files which have to be read before
or during a model run. The actual data contained in the
referenced files (such as time series of external forcings,
parameter values, etc.), by definition, donot belong to
the configuration data.

There are two ways of passing configuration data to
the model:

• via a configuration file.

• via the command line, in addition to the mandatory
arguments introduced in Sec.3.1.

3.4.2 Syntax conventions

A single configuration data item generally consists of
two parts: A keyword and a corresponding value. The
general syntax is shown in the following example:

fruit=apple
number=22
apple_data=/home/fred/apples.txt

Thus, the keyword must be followed by the equal
sign (’=’), followed by the value. The value may be
a string, a number, a logical value, or a string encoding
a datetime value (see Sec.3.2). To avoid ambiguities,
one cannot pass the same configuration data item (iden-
tified by its keyword) via the command lineandvia the
configuration file. Multiple definitions of the same key-
word are generally considered as errors. The configura-
tion data items may appear in any order. This applies to
both the configuration file and the command line.

It is important to note that blank(s) right before the
’=’ character as inkey =value arenotallowed (since
the blank would be treated as part of the keyword).
Some care is necessary if blanks or special characters
appearafter the ’=’ character . Here are the rules:

If the configuration data item is defined in the con-
figuration file, all blanks after the ’=’ are treated as part
of the value string. You don’t need to use quotes here.
Typical examples are shown below:

38 Chapter 3 Input of echse-based models

item1=2012-01-19 00:00:00
item2=c:\my files\data.txt

If a configuration data item containing blanks should
be passed via the command line, quotes must be used
as in the subsequent example, where* stands for the
mandatory arguments (see Sec.3.1). Blank(s) must
not appear between the ’=’ character and the opening
quotes.

model * date="2012-01-19 00:00:00"

If a configuration data item contains special charac-
ters, it must not be specified at the command line but
needs to be defined in the configuration file. This is due
to the fact that those characters may be dropped by the
C++ command line interpreter. A prominent example is
the TAB character (ASCII code 9).

3.4.3 Indirect file references

The configuration data usually contain bothdirect and
indirect file references. Since the latter are sometimes
confusing to users, the difference between the two types
of file references is briefly discussed.

A direct reference is present if a configuration data
item points to adata file containing anything but file
names (typically numbers and possibly some alphanu-
meric IDs). What happens internally is this:

• The model engine reads the configration item and
finds the reference to a data file ’A’.

• At the approriate stage of processing, the model
engine reads the data from ’A’.

An indirect reference is present if a configuration
data item points to a file which contains references to
further files. What happens internally is this:

• The model engine reads the configration item and
finds the reference to a file ’A’.

• The model reads file ’A’ and finds references to the
files ’B’ and ’C’.

• At the approriate stage of processing, the model
engine reads the data from ’B’ and ’C’.

In theory, it would be possible to use a cascade of
such indirect references. The current version of the
echse, however, uses indirect references of the first
level only. See Sections3.8.3, 3.7.3& 3.7.4for exam-
ples.

3.4.4 Overview of configuration data
items

The various configuration data items expected by an
echse-based model are described in detail Tables3.2
– 3.9.

3.4 Configuration data 39

Table 3.2: Keywords of the configuration file controlling the computational behavior.

Keyword Data type Description

trap_fpe logical If TRUE (recommended), an exception will be thrown
if invalid floating point numbers occur in an object’s
state or output variables. IfFALSE, the computation
continues (if possible) andNaN or Inf values may
appear in output files.

multithread logical If TRUE, the model will try to execute parts
of the code that can be scheduled in paral-
lel using multiple threads (but see also keyword
multithread_if_more_than). Please consult
Sec.4.2.1before setting this switch toTRUE!

singlethread_if_less_than integer This key lets you define a threshold value for paral-
lel processing. If the number of objects of a particular
level is< this threshold, these objects will be simu-
lated by a single thread (i. e. in serial mode) even if
multithread=true. If the number of objects of a
particular level isgeq, multiple threads will be used. If
multithread=false, this setting is ignored.

Table 3.3: Keywords of the configuration file dealing with input file formats.

Keyword Data type Description

input_columnSeparator character(s) Column separator(s) used in input files. One ofmore
character(s) may be specified (typed in). Recom-
mended are TAB and space. Using TAB is especially
useful when input files are created from spreadsheet
data by copy-and-paste. When typing a TAB, take care
that it is not auto-converted to spaces by the editor (de-
pends on the editor’s settings). You cannot use charac-
ters that are part of legal object or object group names
(see Sec.3.5).

input_lineComment character(s) Initial character of comment lines in input files. Note
that only whole-line comments are supported. A rea-
sonable choice is#, for example. You cannot use
characters that are part of legal object or object group
names (see Sec.3.5).

output_columnSeparator character Column separator used in output files. Must be a sin-
gle character. Recommended is TAB as it allows the
contents of output files to be pasted into spreadsheets.

output_lineComment character Initial character of comment lines in output files. A
reasonable choice is# for compatibility with R.

40 Chapter 3 Input of echse-based models

Table 3.4: Keywords of the configuration file specifying basic input files.

Keyword Data type Description

table_objectDeclaration string Name/path of the file declaring the simulated ob-
jects (see Sec.3.5).

table_inputOutputRelations string Name/path of the file containing information on the
objects’ input-output relation (see Sec.3.6).

Table 3.5: Keywords of the configuration file related to the simulation time & resolution.

Keyword Data type Description

simStart datetime Start of the simulation time window (= start of the first time interval). Ex-
ample:2005-01-01 00:00:00. Note that a time zone without daylight
saving time (DST) is assumed, such as UTC.

simEnd datetime End of the simulation time window (= end of the last time interval). See
simStart for restrictions.

delta_t integer Length of a simulation time step in seconds. Must be≥ 1. The time step
determines the frequency of data exchange between linked objects. It also
controls the resolution of model outputs. Note that the temporal resolution of
external forcings (time series of boundary conditions) must be equal or greater
than the value ofdelta_t (see Sec.3.8.2for details). Numerical methods
(such as ODE solvers) used in the simulate() method(s) are not affected by
the choice ofdelta_t and may internally use smaller time steps.

3.4 Configuration data 41

Table 3.6: Keywords of the configuration file controling the model’s output files.

Keyword Data type Description

table_selectedOutput string Name/path of the table listing the objects and variables for
which time series output is to be generated (see Sec.3.10.1
for details).

table_debugOutput string Name/path of the table listing the objects for which time
debug output is requested (see Sec.3.10.2for details).

table_stateOutput string Name/path of the table with times, at which the entire
model’s state should be saved. (see Sec.3.10.3for details).

outputDirectory string Name of the directory where all model outputs
requested through table_selectedOutput,
table_debugOutput, table_stateOutput
should be written to. Must be an existing directory with
appropriate permission. The names of the output files are
generated automatically. Note that log and error messages
are not necessarily saved in this directory. The location of
these two files in controlled by the keywordsfile_log
andfile_err (see Table3.1).

outputFormat string Selection of the desired format used to print time se-
ries of selected variables for selected objects (as con-
trolled through the input table specified after keyword
table_selectedOutput). Currently, the two valid
choices are ’tab’ (for TAB-separated table format; file ex-
tension ’.txt’) and ’json’ for output in Java Script Object
Notation (file extension ’.json’). The latter is a slim, self-
documenting data interchange format (see, e. g.http://
www.json.org) supported by many programming lan-
guages and softwares (Example: R-package ’rjson’). Note
that, using appropriate settings for the column separator,
the ’.json’-files can still be imported in spreadsheet soft-
ware.

saveFinalState logical Should the final model state be saved even though the
time corresponding to the end of the simulation period is
not listed in the file specified astable_stateOutput?
This may be particularly convenient in the context of an
automatized forecasting environment.

Table 3.7: Keywords of the configuration file related to initial value files.

Keyword Data type Description

table_initialValues_scal string Name/path of the table with initial values for the scalar
state variables of all objects (see Sec.3.9.1).

table_initialValues_vect string Name/path of the table with initial values for the vector
state variables of all objects (see Sec.3.9.2).

http://www.json.org
http://www.json.org

42 Chapter 3 Input of echse-based models

Table 3.8: Keywords of the configuration file related to external forcings.

Keyword Data type Description

table_externalInput_datafiles string Name/path of the table listing properties and
source files for the external input variables
(see Sec.3.8.3).

table_externalInput_locations string Name/path of the table listing assigning ex-
ternal input locations and weights to the ob-
jects’ input variables (see Sec.3.8.4).

externalInput_bufferSize integer Number of time series records to be
kept in memory. Must be≥ 1. If
externalInput_bufferSize=1, only
a single time series record is read at
a time. If the value is choosen too
large, memory allocation might fail for
large models (many objects and many ob-
ject variables). Choosing a larger value
of externalInput_bufferSize may
optimze the reading of data from disk.
Whether there is an actual gain in perfor-
mance depends on many factors (including
input files and hard ware). Thus, it is rec-
ommended that some tests are carried out
with an increased buffer size starting from
externalInput_bufferSize=1.

3.4 Configuration data 43

Table 3.9: Keywords of the configuration file related to the object groups’ parameter tables.

Keyword Data type Description

name_numParamsIndividual string Name/path of the table holding object-specific
scalar parameters for all objects of an ob-
ject group, i. e. user-defined class (see
Sec. 3.7.1). The name of the object group has
to be supplied in the prefixname. For exam-
ple, for a class ’apple’, the keyword would be
apple_numParamsIndividual. The config-
uration file must contain as many instances of this
keyword as there are object groups (i. e. user de-
fined classes).

name_funParamsIndividual string Like1st row of the table but this key is related to
the object-specificparameterfunctionsrather than
scalar parameters (see Sec.3.7.3).

name_numParamsShared string Like 1st row of the table but this key is re-
lated to the group-specific (shared)scalar param-
eters rather than to object-specific parameters (see
Sec.3.7.2).

name_funParamsShared string Like 2nd row of the table but this key is related
to the group-specific (shared)parameterfunctions
rather than to scalar parameters (see Sec.3.7.4).

44 Chapter 3 Input of echse-based models

3.5 Object declaration table

The object declaration table (example given in Fig.3.1)
consists of two columns of type string:

object (string) Contains the names (ID strings) of
all objects to be simulated. Object names must
be unique. Valid names consist of the characters
a-z andA-Z, digits0-9, the minus (-), the un-
derscore (_), as well as opening and closing paren-
thesis.

objectGroup (string) Contains for each object the
name (ID string) of the corresponding object group
(i. e. the name of the object’s class). Valid names
must also be valid C++ identifiers, hence the char-
acter set is restricted toa-z, A-Z, 0-9, and the
underscore (_). The first character cannot be a
digit or underscore but must be a letter.

3.6 Object linkage table

The object linkage table describes the input-output rela-
tions of the simulated models. For each object, the table

must containn records, wheren is the number simu-
lated input variables of the corresponding object group
(i. e. object class). The table consists of four columns
of type string and one logical column (see Fig.3.2 for
an example):

targetObject (string) Names of objects that re-
ceive input from other simulated objects.

targetVariable (string) Name of the target ob-
ject’s input variable defined in the current row.

sourceObject (string) Name of the object that sup-
plies the input to the target object and variable de-
fined in the current row.

sourceVariable (string) Name of the source ob-
ject’s output variable that supplied the input to the
target model’s input variable.

forwardType (logical) Defines the type of relation.
If TRUE, the relation is of the forward type, which
means that the source object is simulated before
the target object (in every time step). Thus, the
input information used by the target model in the
simulation of a time intervalt0...t1 represents the
output information of the source model queried
at time t1. In other words: The state of the
source model is updated before the state of the
target model. In contrast to that, a backward re-
lation is assumed, if the entry in this column is
FALSE. Then, the target model is simulated be-
fore the source model and, consequently uses ’out-
dated’ information. In general, if the flow of
information between two objects ’A’ and ’B’ of
the feed-forward type (see Sec.2.6.2), the rela-
tion is always of the forward type (entryTRUE re-
quired). Backward relations (entryFALSE) make
sense only in the context of feedback interactions
(see Sec.2.6.3). In the example shown in Fig.2.15,
the data flows from objectMk to Mk−1 and from
objectMk+1 to Mk−1 represent backward rela-
tions. The reverse data flows (Mk−1 → Mk

andMk−1 → Mk+1) represent forward relations.
Note that, if two models ’A’ and ’B’ exchange data
for more than one variable, the type of the rela-
tion must be the same for all those variables. For
example, object ’B’ cannot use output ’x’ of ob-
ject ’A’ in a forward relation and, at the same time,
use another output ’y’ of object ’A’ in a backward
relation (because non of the two objects could be
simulated before the other one).

3.6 Object linkage table 45

Simple model with four objects and two classes (object groups)

object objectGroup

Rhine basin
Constance gage
Danube basin
Vienna gage

Figure 3.1: Example of a simple object declaration table.

Simple river system:
#
spring1 --> reach1
|
junction --> reach3
|
spring2 --> reach2

targetObject targetVariable sourceObject soureVariable forwardType

reach1 inflow spring1 outflow true
reach2 inflow spring2 outflow true
junction inflow_1 reach1 outflow true
junction inflow_2 reach2 outflow true
reach3 inflow junction outflow true

Figure 3.2: Example of a simple object linkage table.

46 Chapter 3 Input of echse-based models

3.7 Object parameters

3.7.1 Object-specific scalar parameters

The numerical (scalar) parameters of the simulated ob-
jects are held in different tables if there are multiple
object groups (i. e. classes). For each object group,
a separate table must be supplied. These tables are in
matrix format. There must be one column with name
object holding the object names (ID strings). The
remaining column(s) hold the parameters for the corre-
sponding objects. The number of columns depends on
the number of parameters that objects of the particular
group (class) have. An example is given in Fig.3.3.

3.7.2 Group-specific (shared) scalar pa-
rameters

In addition to object-specific scalar parameters (see
Sec.3.7.1), group-specific scalar parameters do exist.
In contrast to the former, the values are shared by all
objects of a particular group. The use of group-specific
scalar parameters is often preferred over hard-coded pa-
rameters since the latter cannot be altered without re-
compilation of the model. To be consistent with the
object-specific scalar parameters (see Sec.3.7.1), the
information for the different object groups is held in
separate tables (see example in Fig.3.4), each having
the following two columns:

parameter (string) Name of the parameter.

value (numeric) Value of the parameter.

3.7.3 Object-specific parameter functions

Like the numerical (scalar) parameters, the parameter
functions of the simulated objects are held in different
tables if there are multiple object groups (i. e. classes).
For each object group, a separate table with the follow-
ing five columns has to be supplied:

object (string) Names (ID strings) of the objects.

function (string) Names of the functions to be as-
signed to the objects.

file (string) Names of the files containing the func-
tion data (see Sec.3.7.5for details on the format
and restrictions).

col_arg (string) Names of the column where the ar-
gument values (x) reside in the corresponding data
file.

col_val (string) Names of the column where the
function values (f(x)) reside in the corresponding
data file.

For each object, the table must containn records,
wheren is the number parameter functions of the corre-
sponding object group (i. e. object class). An example
is given in Fig.3.5.

3.7.4 Group-specific (shared) parameter
functions

In addition to object-specific parameter functions (see
Sec.3.7.3), one may define group-specific parameters
functions. In contrast to the former, these functions
are shared by all objects of a particular group. Like
all other parameters, the information for the different
object groups is held in separate tables (one table per
object group). The layout of the table is similar to the
format described in Sec.3.7.3, except for the fact that
theobject column is omitted (since the functions are
not object-specific). Thus, the four expected columns
are:

function (string) Names of the functions to be as-
signed toall objects of the object group.

file (string) Names of the files containing the func-
tion data (see Sec.3.7.5for details on the format
and restrictions).

col_arg (string) Names of the column where the ar-
gument values (x) reside in the corresponding data
file.

col_val (string) Names of the column where the
function values (f(x)) reside in the corresponding
data file.

3.7.5 Function data files

Function data files must have (at least) two columns of
numerical values: a column of argument values and col-
umn of corresponding function values (see Fig.3.6). If
more columns are present, the additional columns are
simply ignored. The columns must have unique names.
The values in the arguments column must be instrictly

3.7 Object parameters 47

Scalar parameters for the individual objects of a particular class

object length slope roughness

reach1 1000. 1.e-03 20.
reach2 5400. 1.e-03 25.
reach3 3300. 1.e-04 30.

Figure 3.3: Example of a table of object-specific scalar parameters.

Scalar parameters shared by all objects of a particular class

parameter value

freezingPoint 0.0
density 1.0

Figure 3.4: Example of a table of group-specific (shared) scalar parameters.

Assignment of parameter functions to the objects of a particular class

object function col_arg col_val file

lake_A storage volume stage data/functions/lake_A.txt
lake_A outflow stage flow data/functions/lake_A.txt
lake_B storage volume stage data/functions/lake_B.txt
lake_B outflow stage flow data/functions/lake_B.txt

Figure 3.5: Example of a table of object-specific parameter functions. The file shows an example of two lakes, each being
described by its storage curve (stage = f(volume)) and a rating curve at the outlet (outflow = f(stage)).

48 Chapter 3 Input of echse-based models

increasing order (i. e. without duplicate values). The ar-
gument valuesmay or may notbe equi-spaced. Whether
the use of equi-spaced arguments is advantageous de-
pends on the specific application. Only some general
recommendations can be given:

• If the function is tabulated with high resolution
(many records) and/or the assessed argument val-
ues are highly variable from one time step to the
next, equi-spaced arguments may be preferable.
This is due to the fact that the value corresponding
to an argument can be determined by index com-
putation.

• If the appropriate resolution changes with the argu-
ment value (e. g. use of a logarithmic scale) and/or
there is a high chance that the assessed argument
values change only slightly (or not at all) from one
time step to the next, one better uses irregularly
spaced arguments. In such a case, the search al-
ways starts at the argument value that has been ac-
cessed most recently. This strategy usually allows
for smaller input files, because one can use a high
argument resolution where function values change
rapidly and a low resolution elsewhere.

3.8 External forcings 49

Storage volume (cbm) of a river reach as a function of the flow rate (cbm/s)

flow volume

0.0 0.000
0.2 244.778
0.5 460.687
1.0 759.379
2.0 1402.216
5.0 3290.339

Figure 3.6: Example of tabulated function with irregularly spaced argument values.

3.8 External forcings

3.8.1 Overview

The assignment of external forcings to the objects of
a particular class is best illustrated using an example
(Fig. 3.7). Let’s assume the growth of urban trees is to
be modeled. Five trees were selected for the study, lo-
cated around the world (3 in Berlin, 1 in Tokyo, and 1 in
Melbourne). Rain and sunshine are assumed to be the
most important time-variable forcings of tree growth
and, consequently, the ’tree’ class has two external input
variables, named ’rain’ and ’sun’. Sunshine and precipi-
tation data are available for different sets of climate sta-
tions. Fortunately, the stations recording sunshine data
are located in the same city as the selected trees (Berlin,
Tokyo, Melbourne). However, rainfall data for Berlin
and Melbourne are unavailable. As a workaround, we
simply use the rainfall data from Tokyo also for Mel-
bourne. For Berlin, we interpolate available data from
Moscow and Vienna instead, since Tokyo is really quite
far away.

To make this strategy work, two things have to be
done:

1. The two external input variables of the ’tree’ class
have to be linked with two time series files, con-
taining the actual data for a single variable at all
available stations. This is illustrated by the solid
connecting lines in Fig.3.7. The model’s in-
put file that is used to establish those links be-
tween variables and time series files is described
in Sec.3.8.3.

2. Links must also be established between the indi-
vidual objects and the locations (i. e. climate sta-
tions). This is illustrated by the dashed connecting

Figure 3.7: Example illustrating the assignment of external
forcings to objects of a particular class.

50 Chapter 3 Input of echse-based models

lines in Fig.3.7. Such links exist separately for
each external forcing. Since a single object may
be linked to more than one location, the links must
also have a ’weight’ attribute. This allows to ac-
count for the fact that Berlin is nearer to Vienna
than to Moscow, when the rainfall for Berlin is es-
timated. The model’s input file that is used to es-
tablish the links between objects and locations is
described in Sec.3.8.4.

3.8.2 Time series data files

A time series data file is a table with the usual header
andtwo or morecolumns. As an exception to the usual
convention (see Sec.3.2), the time information must al-
ways be present in thefirst column of the table. The
remainingn column(s) contain the time-dependend val-
ues of the respective variable atn locations. The order
of these remaining columns is arbitrary since they are
identified by their column names (which usually repre-
sent location names/IDs). The name of the first column
containg the time information must be present but it is
ignored. A reasonable name would be the abbreviation
of the respective time zone, such as ’UTC’. An example
of a time series data file is given in Fig.3.8.

The entries in the time column (first column), must
comply with the subsequent rules:

• Times must be encoded as stings in ISO 8601 for-
mat (YYYY-MM-DD hh:mm:ss) as already de-
scribed in Sec.3.2. Due to this format, the highest
possible resolution is 1 second.

• Any character can be used to separate date and
time information (blank is a usual convention). It
may even be identical with a character used to sep-
arate the table columns.

• The times must be instrictly increasing order, i. e.
the latest data are expected in the file’s first record
and there must be no duplicate times.

• Regular as well as irregular time series are sup-
ported, i. e. the time differences between neigh-
bored records may be variable within a file. This
offers the chance to use a higher resolution in pe-
riods of increased data variability and to use a low
resolution when the values change slowly (or not
at all). Such a strategy can save disk space and
reduce the effort for reading data.

• The resolution, i. e. the smallest time differences
betweenany neighbored records must be≥ the
simulation time step (see keyworddelta_t in
Table 3.5). To give an example: If the simula-
tion time step is 1 hour (delta_t=3600), one
can use time series with a minimum resolution of
1 hour or more (i. e. 1 hour, 2 hours, 1 day, 3 days,
etc.). A time series file containing (some/only) 5
minute data, for example, will not be accepted.

• If the resolution of the time series data file∆t
differs (for some or all interval(s)) from the sim-
ulation time stepdelta_t, the values are auto-
matically transformed (i. e. reduced) if they rep-
resent sums (see discussion of columnsums in
Sec.3.8.3).

With respect to the data values, the following restric-
tions apply:

• The values always represent averages or sums over
a certain time interval (i. e. they do not represent
instantaneous values). The respective time interval
is determined by the difference in times between
two neighbored records (see discussion of column
past in Sec.3.8.3for details).

• Missing values or special values used to identify
invalid data (such asNA) arenot supported. Thus,
data gaps must be handled by external software (or
manual work) prior to model application. It is pos-
sible, however, to use special numerical values (of-
ten -9999) to mark missing/invalid data and to treat
them properly in the classes’ simulate methods.

3.8.3 Assignment of time series files and
attributes to variables

Each external input variable which has been declared
for a particular object class must be linked to a time
series file. The time series file contains the actual data
and its format is described in Sec.3.8.2. In addition to
that, a time series has further attributes which describe
how the times and values are to be interpreted.

All information on the linkage of variables and time
series files as well as time series attributes hast to
be supplied in a single table with the following four
columns:

variable (string) Names of the external input vari-
ables.

3.8 External forcings 51

Time series data file example

Note that it depends on the used time series attribute ’past’ how the
data (temperatures) are interpreted. If past=true, the average temperature
in Berlin between 14:00:00 and 15:00:00 was -1.8 degress Celsius. However, if
past=false, a temperature of -2.0 is assigned to the mentioned time interval.

UTC Berlin Tokyo Sidney

2011-11-15 14:00:00:00 -2.0 10. 24.
2011-11-15 15:00:00:00 -1.8 11. 24.
2011-11-15 16:00:00:00 -1.3 11. 24.
2011-11-15 17:00:00:00 -1.0 10. 23.

Figure 3.8: Example of time series data file containing values of a variable at three locations.

file (string) Names of the files containing the time
series data for an external input variable (see
Sec.3.8.2 for details on the format and restric-
tions).

sums (logical) If TRUE, the data value related to a par-
ticular time interval is interpreted as a sum. This is
appropriate for data generally measured as sums.
Examples include precipitation (given in units of
mm/interval) or radiation (if expressed in units of
Joule/interval). IfFALSE, the data are interpreted
as averages over the time interval. This is appro-
priate, for example in case of velocities (m/s) and
the like, temperatures, or radiation intensities (ex-
pressed in units of Watts).

past (logical) It is a common practice that time series
data files contain a single time column only, even if
the stored values represent averages or sums over
time intervals instead of instantaneous values (see
Sec.3.8.2). Consequently, there must be a conven-
tion whether a given time marks thebeginor the
endof an interval. This is accomplished through
the setting ofpast. If past=true, it is assumed
that the times given in the respective column of a
time series data file markend-of-intervals. This
is a intuitive convention used by many (but not
all) data providers. It is important to note that the
begin of the time interval related to the very first
record in the file isunknownif past=true. Con-
sequently, the data values of the very first record
are ignored. In contrast to that, times given in the
time series file are assumed to mark the begin of
time intervals, ifpast=false. Then, the end of

the time interval related to the last record in the
file is unknown and the values are, consequently,
ignored. See also Fig.3.8for an example.

Note that the table doesnot contain a column like
objectGroup. Thus, if an external input variable
with the same name is declared in multiple object
classes, the data are always taken from the same time
series file. Thus, the table should contain as many
records as there are unique names of external input vari-
ables in all object classes. An example of a simple table
is provided in Fig.3.9.

3.8.4 Assignment of external input loca-
tions to objects

The table used to establish the links between objects
and certain columns of a time series data file (that usu-
ally represent different locations) consists of the four
colums described below:

object (string) Names (ID strings) of objects getting
external input.

variable (string) Names of the external input vari-
able(s).

location (string) Location(s) to be assigned to a
particular variable for a particular object. The used
location name must be an existing column in the
time series data linked to the respective variable
(see Sec.3.8.3).

weight (numeric) Weights to be assigned to a partic-
ular station for a particular variable and object. If,

52 Chapter 3 Input of echse-based models

External forcings: Assignment of time series files & attributes

variable sums past file

rain true true precipitation.txt
flow false true flowrates.txt
wind false true windspeed.txt

Figure 3.9: Example of table holding information on time series data files and attributes for a set of external input variables.

for a specific variable, an object uses data from
only a single location, the weight is generally 1.0.
If, for a specific variable, the object is linked to
multiple stations, thesum of weightsover all lo-
cations (for that variable) is 1.0. This is just the
usual case of spatial interpolation or, more gener-
ally, weighted averaging (see Eqn.3.1).

The value of an external forcing applied to a particu-
lar object at a particular time,X is computed according
to Eqn.3.1. In this equation,wi is the weight of a loca-
tion with indexi as assigned in theweight column of
the described table. The symbolvi denotes the value of
the external variable for the same location (indexi) read
from the respective time series data file. The number of
involved locations isn.

X =

n∑
i=1

wi · vi (3.1)

The described weighting approach and its typical use
in the context of spatial interpolation is illustrated by
Fig. 3.10. In the shown cases (a) and (b), the number of
involved locationsn with respect to a particular object
and variable is 1 and the assigned weightw1 equals 1.0.
In the cases (c) and (d) we haven > 1 and multiple
weights whose values satisfy Eqn.3.1.

A minimum example of a table assigning external in-
put locations to objects is given in Fig.3.11. This table
corresponds to the example introduced in Sec.3.8.1. In
realistic, more complex models, such a table may be-
come quite large, especially if many objects are sim-
ulated that use information of multiple external input
variables and the input (for a specific object and vari-
able) is taken from multiple locations. This is due to the
fact that the information for all objects (of all classes) is
collected in a single table.

(a) (b)

(c) (d)

Figure 3.10: Assignment of values of an external variable
measured at multiple locations to the simulated objects (here
represented by grid cells). Shown are typical situations aris-
ing in spatially distributed modeling: (a) Spatial resolution of
the external variable matches with the model’s resolution,(b)
Use of low-resolution input in a high-resolution model, (c)
Estimation of an object’s input by interpolation of point data,
(d) Use of high-resolution data in a low-resolution model.

3.9 Initialization of states 53

External forcings: Assignment of locations for the ’tree example’

object variable location weight

tree_berlin1 sun Berlin 1.0
tree_berlin2 sun Berlin 1.0
tree_berlin3 sun Berlin 1.0
tree_tokyo sun Tokyo 1.0
tree_melbrn sun Melbourne 1.0

tree_berlin1 rain Moscow 0.3
tree_berlin1 rain Vienna 0.7
tree_berlin2 rain Moscow 0.3
tree_berlin2 rain Vienna 0.7
tree_berlin3 rain Moscow 0.3
tree_berlin4 rain Vienna 0.7
tree_tokyo rain Tokyo 1.0
tree_melbrn rain Tokyo 1.0

Figure 3.11: Example of table holding information on the links between the simulated objects and the locations where data of
external input variables are available. The table corresponds to the example used in Sec.3.8.1(Fig. 3.7).

3.9 Initialization of states

3.9.1 Initialization table for scalar states

This table contains the initial values of all the scalar
state variables of all simulated objects (see Fig.3.12for
an example). The three required columns are defined as
follows:

object (string) Names (ID strings) of all objects with
one or more scalar state variable(s).

variable (string) Names of the scalar state vari-
able(s).

value (numeric) Initial values assigned to the corre-
sponding variables of the respective models.

3.9.2 Initialization table for vector states

As opposed to the initialization table for scalar state
variables (see Sec.3.9.1), the initialization table for
vector state variables has an additional column named
index. This column is of typeintegerand contains the
element indices corresponding to the vector state vari-
able specified in thevariable column. The follow-
ing rules apply to theindex column:

• The C/C++ convention is used for the vectors’ in-
dices, i. e. the index of a vector’s first element is 0
(not 1, as in many other programming languages).

• For each model and variable, at least one record
must be present with a value of 0 in theindex
column. Thus, an initial value must be present at
least for one (the first) element of each vector.

• More records may follow for a particular model
and variable, with values of 1 throughn in the in-
dex column. The index values must increase by 1
from one record to the next, i. e. there must be no
gaps in the sequence of indices.

• The highest index value,n, determines theinitial
sizeof a vector. Since indexing starts at 0, the total
vector size (number of elements) isn − 1. Note
that a vector’s size may change during simulation,
depending on the code of the simulate method of
the corresponding model class.

A simple example of an initialization table for vector
state variables is given in Fig.3.13.

54 Chapter 3 Input of echse-based models

Initial values of all objects’ scalar state variables

object variable value

reservoir_A storage 3.e09
reservoir_A waterlevel 255.8
catchment_X snowheight 0.
catchment_X soilmoist .23

Figure 3.12: Example of table with initial values of scalar state variables.

Initial values of all objects’ vector state variables

object variable index value

tree1 fruitSize 0 92.
tree1 fruitSize 1 88.
tree1 fruitSize 2 90.
... more data ...
tree782 fruitSize 0 101.
tree782 fruitSize 1 96.
... more data ...

Figure 3.13: Layout of a table with initial values of vector state variables. The example corresponds to a model of apple trees
having a variable number of fruits. Consequently, all properties of the individual apples must be held in vector state variables.
Initially, the apple tree ’tree1’ has three fruits and ’tree2’ has only two. Depending on the implementation of the appletree
class, these numbers may change during simulation.

3.10 Model output control 55

3.10 Model output control

3.10.1 Selecting output variables for spe-
cific objects

For each object, the output of simulated values in the
form of time series may be requested. Note that this is
restricted to those variables which have been declared
as ’outputs’ in the corresponding class. Consequently,
if time series output for a state variable is required, for
example, one must declare an (additional) output vari-
able in the respective object class and the values of the
state variable must be assigned to the output variable in
each time step. The same procedure is necessary in or-
der to output time series of an object’s external inputs,
functions, etc. The table used to request output of cer-
tain variables for certain objects has the following two
columns:

object (string) Names (ID strings) of objects for
which output is requested.

variable (string) Names of output variables de-
clared in the classes corresponding to the objects.
A separate record is expected for each variable.

digits (integer) Controls the number of digits after
the decimal place. Numbers are always printed in
a fixed format, i. e. as 0.33 instread of 3.3e-01, for
example.

An example of such a table is given in Fig.3.14. It
is important to note that it isnot checked whether the
entries in theobject column actually represent the
names of existing objects. Thus, to turn offany output,
one could just supply a single record with a non-existing
object’s name.

Also note that the time series of all variables re-
quested for a particular object are written to a single file.
The name of this file is generated automatically by ap-
pending an extension (determined by the requested for-
mat) to the object’s name. The directory where the out-
put file will appear is controlled by the value assigned to
keyoutputDirectory in the configuration file (see
Table3.6).

3.10.2 Enabling debug output for specific
objects

By requesting debug output for certain objects, it is pos-
sible to create time series outputs for basicallyall com-
puted values, namely

• Scalar state variables

• Vector state variables

• External input variables

• Simulated input variables

• Output variables.

This kind of output is particularly useful when de-
bugging a model. Depending on the complexity of
an object’s data and the number of simulated time
steps, the produced output files may become quite large.
Therefore, the approach described in Sec.3.10.1is usu-
ally more appropriate if only some of the computed
quantities are actually of interest.

The table used to request debug outputs consists of
just a single column with nameobject (no example
given). It holds the names (ID strings) of the objects
for which output is requested. It isnotchecked whether
the entries in that column represent the names of ex-
isting objects. Thus, if no debug output is required at
all, the table should contain just a single record with
a non-existing object’s name. Note that the writing of
large debug output files that are not actually required
may lead to a significant waste of computing time and
disk space.

The name(s) of the output file(s) are generated auto-
matically by appending an extension (currently.dbg)
to the objects’ name(s). The directory where the output
files will appear is controlled by the value assigned to
keyoutputDirectory in the configuration file (see
Table3.6).

3.10.3 Output of the model’s state at se-
lected times

In some situation is is desirable to write the values of all
state variables of all simulatedat a certain point in time
to disk. Potential uses of the produced file(s) containing
theentire model’s stateinclude

• restarting of the model, using the produced files to
initialize the state variables in a subsequent call,

• visualization of spatial patterns.

The table used to request outputs of the model’s state
consists of just a single column with nametime (no
example given). It holds the times for which the output
is requested as strings in the usual ISO 8601 format (see
Sec.3.2). One should note that output is only created if

56 Chapter 3 Input of echse-based models

Selection of for certain variables and objects for time series output

object variable digits

lake_1 waterlevel 2
lake_1 outflow 3
lake_1 temperature 0
lake_2 temperature 0

Figure 3.14: Example of a table used to request the writing of time series files for selected output variables of certain models.

a specified time also represents the end of a simulation
time step (exactly to the second). Thus, it is not possible
to request the model’s state for intermediate times (such
as 07:30, if the simulation time step is 1 hour and the
model was started at a full hour). The only technique
of suppressing outputs of the model’s state at all is to
specify (valid) times that do not meet the above criteria.
Preferably, one specifies just a single time which is far
outside the simulation time window and easily identi-
fied as a dummy such as1900-01-01 00:00:00,
for example. Saving state information for many time
steps despite of the fact that it is not actually required
wastes both computing time and disk space.

For each point in time, two output files are created.
One of the files contains the current values of scalar
state variables and the other file holds the values of
the vector state variables. The used formats are iden-
tical to the initialization tables described in Sec.3.9.1
(Fig. 3.12) and Sec.3.9.2(Fig. 3.13), respectively.

The name(s) of the output file(s) are gener-
ated automatically using the respective time
stamp. The values of the scalar state variables are
saved in file statesScal_YYYYMMDDhhmmss
and the vector state variables are written to file
statesVect_YYYYMMDDhhmmss.The 14 digits
at the end of the file names encode the time (4-digit
year, followed by 2-digit month, day, hour, minute,
and second). The directory where the output files
will appear is controlled by the value assigned to key
outputDirectory in the configuration file (see
Table3.6).

3.10.4 Precision of printed outputs

The current version of theechse writes all output
data in a scientific format with three digits after the pe-
riod. Thus, numbers are formatted like±X.YYYe±ZZ,

whereZZ is the exponent (base 10) corresponding to the
numberX.YYY. Currently, the output formatcannotbe
changed by the model user.

A potential issue with the±X.YYYe±ZZ format is
that the precision of output data is limited to a total
number of 4 digits. This is sufficient for many applica-
tions but may sometimes be problematic. In such cases,
it is recommended to transform the data by adding
or subtracting an appropriate constant (at latest before
calling theset_output()method; see Table2.2).

Let’s consider the example of a reservoir in a moun-
tainous region. Suppose that the reservoir’s water level
ranges from 2150 to 2180 m (a.s.l.) due to operation
and fluctuations of the inflow. If the model writes the
simulated water level to output files in units of m a.s.l.,
the precision is limited to 1 m only! To notice that, one
must consider that the minimum and maximum values
would be printed as2.150e+03 and 2.180e+03,
respectively. By subtracting an appropriate constant,
say 2100, the output precision can be increased signif-
icantly because the new data range is 50–80 (printed
as5.000e+01 and8.000e+01, respectively). After
the transformation, the precision of the printed data is
about 1 cm, i. e. 100 times higher.

Chapter 4

User guidelines

4.1 Model discretization

Often, alternative options of discretizing a real-world
system do exist. Each alternative usually comes with
specific pros and cons. Depending in the intended ap-
plication of the model, a particular option may be more
or less appropriate (or convienient to use). Basic as-
pects of proper model discretization are discussed in the
subsequent sections Sec.4.1.1–4.1.2.

4.1.1 Basic rule

The most basic rule is this: If two objects are char-
avcterized by different sets of state variables, i. e. the
names of the state variables are not the same, the two
objects belong to different classes.

4.1.2 Sub-discretization

Real-world objects can (or must be) often further dis-
cretized into sub-units. This is usually the case, when
the object’s state variables are subject to spatially vari-
ability. For example, a larger catchment can be bro-
ken into sub-catchments, that differ with respect to cer-
tain properties (proportion of forest, soil type, etc.).
In such situations one has to decide whether the sub-
discretization should implemented

• within the object, or

• by splitting an object into multiple separate ob-
jects.

Such a decision should be made based on the guide-
lines presented below.

4.1.2.1 Dynamic sub-discretization

If the sub-discretization (i. e. the number of spatial
sub-units, for example) is time-variable, one must use
vector-valued state variables (see Sec.2.2.2). This is
due to the fact that the size (i. e. the number of ele-
ments) of the vectors is allowed to change during the
simulation period. A dynamic sub-discretization may
be necessary when modeling the travelling of a flood
wave in a homogeneous river reach represented by a
cascade of linear reservoirs. In such a model, the ap-
propriate number of linear reservoirs typically depends
on the flow rate.

The approach of using vector-valued state variables
only introduces additional state variables (but not pa-
rameters, etc.). Note: Pragmatically, vector state vari-
ables may also be ’misused’ as scalar parameters, if pa-
rameter values are variable among the sub-units. This
is, however, not efficient, because the info on parame-
ters then (unnecessarily) appears in output files.

4.1.2.2 Static Sub-Discretization

If, in contrast to the situation discussed above, the num-
ber of sub-units is constant over the simulation period,
several alternatives do exist:

State variables only If the sub-discretization is lim-
ited to state variables (i. e. all sub-units have common
parameters and external inputs), one may use vector-
valued state variables. The size of the vectors is simply
held constant (by not changing it). Note: Pragmatically,
vector state variables may also be ’misused’ as scalar
parameters, if parameter values are variable among the
sub-units. This is, however, not efficient, because the
info on parameters then (unnecessarily) appears in out-
put files.

57

58 Chapter 4 User guidelines

Fixed number of sub-units If the number of sub-
units is the same for all objects of a class, one should use
multiple scalar state variables (and/or parameters). Ex-
ample: A catchment class, with a fixed number of land-
use classes (such as ’forest’, ’water’, ’urban’, ’other’).

Remaining cases If (a) the sub-discretization is not
limited to state variables (i. e. parameters are variable
as well) and (b) the number of required sub-units is spe-
cific to individual objects, one should treat the sub-units
as objects of a separate (additional) class and define ap-
propriate interactions between the objects of the origi-
nal and new class. Example: If the number of (relevant)
land-uses in a catchment varies from one catchment to
the next (and using a fixed number seems inefficient),
one may introduce a class new ’landUseUnit’. The sub-
units are then implemented as objects of that new class,
each being linked to the corresponding catchment ob-
ject.

4.2 Optimizing for speed

4.2.1 Parallel processing

The echse software comes with built-in support
for shared-memoryparallel computing. This is im-
plemented using OpenMP (http://openmp.org/)
which is supported by many modern compilers. Paral-
lel processing can be enabled/disabled by the user via a
model’s configuration data (see Table3.2).

Please note thatshared-memoryparallel computing
only works on systems which are capable of running a
single processasmultiple threads. Please note, how-
ever, that the attempt to use multi-threading does not
necessarily increase the performance, i. e. save compu-
tation time. In fact, depending on computer architecture
(hardware) and the specific model, the model mayslow
down unexpectedly although it should become faster
from theory. A possible reasons for this undesired be-
haviour might be that the overhead for the creation of
multiple threads is higher than the actual gain from the
parallel simulation. Another possible cause might be
that, although the machine supports multiple threads,
these threads share a limited ressource (like a floating-
point arithmetic module, for example). Then, the mul-
tiple threads run sequentially in fact.

Present experience has shown that parallel process-
ing is effective on a true multi-processor machine,

i. e. a machine with more than one physical CPU1. It
was found to be counterproductive, however, on multi-
kernel architectures where all kernels are part of one
single CPU2.

Thus, it is recommended to always empirically de-
termine the gain in computation speed (or slow down).
This is easily done by inspecting the computation time
of a particular simulation with multi-threading being
turned on and off, respectively (see Table3.2).

4.2.2 Miscellaneous

Declaring local variables of the simulate-Method as
static does not have an effect (at least when compiling
with gcc and optimization). It seems that the optimiza-
tion performed by the compiler prevents the repeated
allocation of memory on every call of the simulate-
method.

1Dell machine with 4 CPUs of type Intel Core i7-2620M, each of
which with 2 kernels, running 32 bit Ubuntu 12.04 LTS

2Several dual-core and quad-core machines running Windows 7

http://openmp.org/

Chapter 5

Source code (PRELIMINARY)

5.1 Programming language

Execution time is critical for many operatinal and scien-
tific applications. Therefore, the use of a compiled lan-
guage (like FORTRAN 95+ or C++) is preferred over
the use of a interpreted language (like Java, Matlab, R,
. . .). C++ was selected as the language for implement-
ing echse for the following reasons:

• Execution speed of the compiled code.

• Full support of object-oriented (OO) programming
features.

• A standard way of exception handling exists.

• Availability of libraries.

• Availability of free compilers for any platform
(gcc).

• Widespread use.

59

60 List of figures

List of Figures

1.1 Basic idea of a modeling framework.. 9

2.1 Relation between the termsclass, object, object group, andmodel. 14
2.2 Classes, objects, andobject groupsfrom a programmers point of view.. 14
2.3 Overview of the features of a class.. 15
2.4 Specification of the ’simulate’ methods in the abstract base class (parent class) and the application-

specific child classes.. 19
2.5 Major components of theechse modeling framework. 21
2.6 Sketch of a single linear reservoir.. 23
2.7 Input file for the code generator, containing the declaration of a linear reservoir class.. 23
2.8 Part of the generated header file for the linear reservoirclass showing the frame of the ’simulate’

and ’derivsScal’ methods. The manually written code is imported by the#include directives. . 25
2.9 Bodies of the ’simulate’ and ’derivsScal’ methods for the linear reservoir class if an analytical

solution is adopted.. 26
2.10 Bodies of the ’simulate’ and ’derivsScal’ methods for the linear reservoir class if a numerical

solution is adopted.. 27
2.11 Essential computational steps of a model run.. 28
2.12 Accessible data from a single object’s perspective.. 29
2.13 Basic types of object interaction.. 30
2.14 Types of interactions between two buckets filled with a liquid. 30
2.15 Use of an artificialobserver objectto provide two sequentially processed, feedback-coupled ob-

jects with information of equal up-to-dateness.. 31
2.16 Example outflowq from a linear reservoir within a discrete modeling time stepof length∆t. . . . 32

3.1 Example of a simple object declaration table.. 45
3.2 Example of a simple object linkage table.. 45
3.3 Example of a table of object-specific scalar parameters.. 47
3.4 Example of a table of group-specific (shared) scalar parameters. 47
3.5 Example of a table of object-specific parameter functions. 47
3.6 Example of tabulated function with irregularly spaced argument values. 49
3.7 Example illustrating the assignment of external forcings to objects of a particular class.. 49
3.8 Example of time series data file containing values of a variable at three locations.. 51
3.9 Example of table holding information on time series datafiles and attributes for a set of external

input variables. 52
3.10 Assignment of values of an external variable measured at multiple locations to the simulated objects.52
3.11 Example of table holding information on the links between the simulated objects and the locations

where data of external input variables are available.. 53
3.12 Example of table with initial values of scalar state variables. 54

61

62 List of figures

3.13 Layout of a table with initial values of vector state variables. 54
3.14 Example of a table used to request the writing of time series files for selected output variables of

certain models. 56

List of Tables

2.1 Data access methods, part I: Read-only methods.. 20
2.2 Data access methods, part II: Write-only methods.. 20
2.3 Description of the keywords expected in the ’type’ column of a class declaration table.. 22

3.1 Mandatory command line arguments of a model.. 36
3.2 Keywords of the configuration file controlling the computational behavior. 39
3.3 Keywords of the configuration file dealing with input file formats. 39
3.4 Keywords of the configuration file specifying basic inputfiles. 40
3.5 Keywords of the configuration file related to the simulation time & resolution. 40
3.6 Keywords of the configuration file controling the model’soutput files. 41
3.7 Keywords of the configuration file related to initial value files. 41
3.8 Keywords of the configuration file related to external forcings. 42
3.9 Keywords of the configuration file related to the object groups’ parameter tables.. 43

63

64 Bibliography

Bibliography

Ahuja, L.R., Ascough, J.C., David, O., 2005. Develop-
ing natural resource models using the object model-
ing system: feasibility and challenges. Advances in
Geosciences 4, 29–36.

DHI, 2006. ECO Lab – A numerical laboratory for eco-
logical modeling. Danish hydraulic institute. URL:
http://www.dhisoftware.com.

Hill, C., DeLuca, C., Balaji, Suarez, M., Da Silva, A.,
2004. The architecture of the earth system modeling
framework. Computing in Science & Engineering 6,
18–28.

Kneis, D., 2012. Eco-Hydrological Simulation Envi-
ronment (ECHSE) - Installation and Administration
Guide. University of Potsdam, Institute of Earth-
and Environmental Sciences. URL:http://
echse.bitbucket.org/downloads/
documentation/echse_install_doc.
pdf.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flan-
nery, B.P., 2002. Numerical recipes in Fortran 90 -
The art of parallel scientific computing. 2 ed., Cam-
bridge university press.

Regnier, P., Vanderborght, J.P., Steefel, C.I., O’Kane,
J.P., 2002. Modeling complex multi-component
reactive-transport systems: Towards a simulation en-
vironment based on the concept of a knowledge base.
Applied Mathematical Modelling 26, 913–927.

Reichert, P., 1998. AQUASIM 2.0 - Computer pro-
gram for the identification and simulation of aquatic
systems, User manual. EAWAG. URL:www.
aquasim.eawag.ch.

Thullner, M., Van Cappelen, P., Regnier, P., 2005. Mod-
eling the impact of microbial activity on redox dy-
namics in porous media. Geochimica et Cosmochim-
ica Acta 69, 5005–5019.

65

http://www.dhisoftware.com
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
http://echse.bitbucket.org/downloads/documentation/echse_install_doc.pdf
www.aquasim.eawag.ch
www.aquasim.eawag.ch

Index

echse, 9

boundary condition,seeexternal input

class
definition,13
members,15

code generator,21, 23
command line,35
configuration data,37

exceptions,28
external input,15, 49, 50, 52

forcing,seeexternal input
format

datetime,37
files,35

function,46

generic model,seesimulation environment

input variable,15
external,seeexternal input
simulated,seesimulated input

interactions,seeobject interaction

linkage table,seeobject linkage table

modeling framework,seesimulation environment

object
declaration,44
definition,13
interaction,29, 44

object declaration table,44
object group,14
object linkage table,44
output,55

debug,55
model state,55
precision,56

selection,55
output variable,17

parameter,16
function,16, 46
scalar,16, 46

simulate method,17
simulated input,15
simulation environment,9
state variable,15

initialization,53
scalar,15
vector-valued,15

time series,50
traceback,29

units,37

66

	Contents
	1 Introduction
	1.1 The echse simulation environment
	1.2 Potential uses and limits
	1.3 Required user skills
	1.3.1 Use of existing models
	1.3.2 Development of models

	2 Basic concepts
	2.1 Important terms
	2.1.1 Objects
	2.1.2 Classes
	2.1.3 Object groups
	2.1.4 Summary

	2.2 Features (members) of a class
	2.2.1 Overview
	2.2.2 State variables
	2.2.3 Input variables
	2.2.4 Parameters
	2.2.5 Output variables
	2.2.6 The 'simulate' method
	2.2.7 The 'derivsScal' method

	2.3 Automatic code generation
	2.3.1 Role of generated code in the echse framework
	2.3.2 The code generator
	2.3.3 Inputs of the code generator
	2.3.4 Outputs of the code generator

	2.4 Example: Implementing a new class
	2.4.1 Linear reservoir
	2.4.2 Step 1: Declaration of the class
	2.4.3 Step 2: Code generation
	2.4.4 Step 3: Implementing the class' methods
	2.4.5 Step 4: Compilation

	2.5 Outline of computational steps
	2.5.1 Overview
	2.5.2 Time and object loop
	2.5.3 Exception handling

	2.6 Interactions between objects
	2.6.1 Overview and accessible data
	2.6.2 Types of interactions
	2.6.3 Handling of feedbacks
	2.6.4 Conservation of mass or energy

	3 Input of echse-based models
	3.1 Mandatory command line arguments
	3.2 General notes on file formats
	3.3 Units of variables and constants
	3.4 Configuration data
	3.4.1 Alternative ways of passing config data
	3.4.2 Syntax conventions
	3.4.3 Indirect file references
	3.4.4 Overview of configuration data items

	3.5 Object declaration table
	3.6 Object linkage table
	3.7 Object parameters
	3.7.1 Object-specific scalar parameters
	3.7.2 Group-specific (shared) scalar parameters
	3.7.3 Object-specific parameter functions
	3.7.4 Group-specific (shared) parameter functions
	3.7.5 Function data files

	3.8 External forcings
	3.8.1 Overview
	3.8.2 Time series data files
	3.8.3 Assignment of time series files and attributes to variables
	3.8.4 Assignment of external input locations to objects

	3.9 Initialization of states
	3.9.1 Initialization table for scalar states
	3.9.2 Initialization table for vector states

	3.10 Model output control
	3.10.1 Selecting output variables for specific objects
	3.10.2 Enabling debug output for specific objects
	3.10.3 Output of the model's state at selected times
	3.10.4 Precision of printed outputs

	4 User guidelines
	4.1 Model discretization
	4.1.1 Basic rule
	4.1.2 Sub-discretization

	4.2 Optimizing for speed
	4.2.1 Parallel processing
	4.2.2 Miscellaneous

	5 Source code (PRELIMINARY)
	5.1 Programming language

	List of figures
	List of tables
	Bibliography
	Appendix
	Index

